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Vladimir Andrunakievich 

(1917–1997) 

Vladimir Andrunakievich, a prominent mathematician and great organizer 

of science, is known due to his remarkable results in the theory of radicals 

in rings and algebras, due to an algebraic school which he created in 

Moldova, and also due to his activities as one of the founders of the 

Academy of Sciences of Moldova and the Institute of Mathematics. 

V. Andrunakievich was born on April 3, 1917. He finished the 

“Aleco Russo” lyceum in Kishinev in 1936 and graduated from the 

University of Iaşi in 1940. In 1940-1941 he worked as teacher of 

mathematics at a secondary school in Kishinev. During the World War II 

his family was evacuated to Kazakhstan (the town of Geambul). In 1943-



Alexei Kasu 

1947 he took postgraduate course at the Moscow State University, the 

great scientists O.Yu. Schmidt and A. G. Kurosh were his scientific 

supervisors. 

In 1947 V. Andrunakievich successfully finished his postgradu-ate 

study and defended Doctor Thesis. He returned to Kishinev and worked as 

associated professor and then as full professor at the Kishinev State 

University and the Kishinev Pedagogical Institute (1947-1953). In 1953-

1961 he worked at the Moscow Institute of Chemical Technologies. 

During this period he obtained a series of important results on radicals in 

rings, which constituted the bases of his Doctor habilitat thesis, defended 

in 1958. 

When the Academy of Sciences was organized in Moldova, 

V.Andrunakievich returned to Kishinev, where he lived till the end of his 

life. 

In 1961 V. Andrunakievich became a full member of the Academy of 

Sciences of Moldova and the director of the Institute of Physics and 

Mathematics. The Institute of Mathematics was organized in 1964, and V. 

Andrunakievich was its director for about 30 years. During this period he 

was a vice-president of the Academy of Sciences of Moldova (1965-1974, 

1979-1990), the coordinator-academician of the Section of Physics and 

Mathematics of the ASM (1964-1985). 

Scientific interests of Acad. V. Andrunakievich were concentrated on 

the theory of rings and algebras, he was among pioneers of a new domain, 

theory of radicals. His first cycle of works was devoted to the theory of 

radicals in associative rings and algebras. In 1946-1961 he distinguished 

from the class of all radicals the most useful in applications radicals, 

namely special and idempotent, and showed their usefulness by proving 

structural theorems. The ideas and constructions of this cycle helped to 

understand the connections between different special radicals which 

generalize the classical ones. Subidempotent radical named after 

V.Andrunakievich and the Andrunakievich's lemma have been used till 

present not only in the theory of associative rings, but also in other related 

algebraic systems. 

A natural continuation of those investigations was presented in his 

second cycle of works devoted to the structural theory of rings and 

algebras. As long ago as in 1947 V. Andrunakievich showed the 
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construction of so called adjoint fractions that was the first step to the 

structural theory of quasiregular algebras. In works of the period 1967-

1972, V. Andrunakievich and his disciples developed the structural theory 

of rings and algebras without nilpotent elements, in its framework they 

found a logical completion of the classical Weierstrass, Dedekind and 

Krull theorems on decomposition of algebras without divisors of zero. 

These investigations were summarized in monograph [2]. 

The third cycle of Acad. V. Andrunakievich's works was connected 

with the generalization of noncommutative case of the classical theory of 

Notherian primarity, i.e. the additive theory of ideals. Principal goals of 

this theory are the proof of existence of the representation of an ideal as 

the intersection of some special ideals (primary, primal, tertiary, etc.), and 

also the uniqueness of such representation. In works of the period 1964-

1972, V. Andrunakievich and his disciples showed that there is the unique 

generalization of primarity satisfying the existence and uniqueness 

conditions, and this generalization is the tertiarity. They developed the 

general additive theory which can be used not only for rings but also for 

many other algebraic systems. 

V. Andrunakievich worked actively in many other domains having 

publications in topological algebra, on variaties of quasiregular and 

strongly regular algebras. 

Mathematical talent of Acad. V. Andrunakievich was harmoniously 

combined with his distinguished teacher and organizer abilities. For his 

great contribution to the development of mathematics and education of 

high quality specialists Acad. V. Andrunakievich was awarded “Ordinul 

Republicii” and other high orders.  

The organization of the Institute of Matematics of the ASM, the main 

centre of mathematical research in Moldova, and the creation of algebraic 

school in Moldova are his greatest merits. 

The scientist of the world scale, V. Andrunakievich left a rich 

scientific inheritance of more than 150 published works. His ideas have 

been used actively and applied to different problems, his ar ticles have 

been permanently cited. 

Respecting his memory, young algebraists continue the investigations 

being the content of V. Andrunakievich's life. 



Alexei Kasu 
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Lemma
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Abstract

The concept of special radicals, exemplified by the prime, nil,
Jacobson and Brown-McCoy radicals, was central to Andruna-
chievici’s seminal papers [1]. Subsequently questions posed in
these papers have been answered, new ones have arisen, many
answered in turn, and interesting open problems remain. In
these papers the result which has become known as Andrunachie-
vici’s Lemma also appeared. In the intervening period versions of
this lemma have been proved for various kinds of non-associative
rings. We shall give an account of these developments.

Keywords: algebra, radical theory.

1 Introduction

We shall use the terms radical class and, more briefly, radical, in the
sense of Kurosh and Amitsur: a radical class of rings is a non-empty
homomorphically closed class R such that for every ring A,

R(A) =
∑

{I ⊳ A : I ∈ R} ∈ R

and R(A/R(A)) = 0. Associated with a radical R is the class S of R-
semi-simple rings: the rings A for which R(A) = 0. In general a class

c©2017 by Barry Gardner
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is called a semi-simple class if it is associated in this way with some ra-
dical. Semi-simple classes are intrinsically characterized as non-empty
classes which are hereditary (closed under ideals) closed under exten-
sions and closed under subdirect products. Each class C is contained
in a smallest radical class L(C) called the lower radical class defined by
C. There is also a largest radical class U(C) for which all rings in C are
semi-simple, called the upper radical class defined by C.

2 Special radicals

A class of prime rings is special if it is hereditary for non-zero ideals and
closed under essential extensions. (A ring A is an essential extension
of an ideal I if I has non-zero intersection with every non-zero ideal
of A.) In [1], a special radical was defined to be a radical which is the
upper radical defined by some special class of prime rings. For example
the prime radical is the upper radical defined by the special class of
all prime rings and the Jacobson radical is defined by the special class
of (left) primitive rings. It was shown that a radical class is special
if and only if it contains all nilpotent rings, is hereditary and all its
semi-simple rings are subdirect products of semi-simple prime rings. It
has since been shown by Beidar [2] that the hereditary assumption is
unnecessary.

One of the questions asked in [1] was whether a hereditary radical
containing all nilpotent rings must be special. The first counterexample
was constructed by Ryabukhin [3]: the upper radical defined by the class
of boolean rings without ideals isomorphic to the field Z2 is not special.
Many examples are now known ([4], [5], [6], [7], [8] among others)
and many of these have a family resemblance to this first one: they
are upper radical classes defined by rings whose prime homomorphic
images can’t be isomorphic to ideals. France-Jackson [8] proved that
a radical, other than the prime radical, for which all prime essential
rings are semi-simple is not special.

Snider [9] observed that radical classes form a complete lattice (a
“large” lattice, as they don’t form a set), as do the special radicals.
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In the special case the operations are:
∧
Ri =

⋂
Ri and

∨
Ri = the

smallest special radical containing all the Ri. (There is a smallest
special radical class containing a given class C of rings: we’ll denote
it by LS(C), or LS(A) if C = {A}.) Much work has been done on
characterizing the atoms of this lattice. In [4] it was shown that if
T is an idempotent simple ring then LS(T ) is an atom. The next
examples were due to Korolczuk [10], using what she called ∗-rings:
prime rings whose proper homomorphic images are in the prime radical
class. She showed that if A is a ∗-ring, then LS(A) is an atom. This
is a generalization, as idempotent simple rings are clearly ∗-rings.

Going from small to large, the coatoms of special radicals were
characterized by Krachilov [14]: R is a special coatom if and only if
R = U(T ) where T is a full matrix ring over a finite field.

Every prime ring A is contained in a smallest special class πA[15].
This consists of all prime rings having an ideal isomorphic to an acces-
sible subring of A. The smaller the special class, the larger the corre-
sponding special radical, so we can stay up towards the large end of
the scale by looking at small special classes, and a natural question is:
for which prime rings A is πA the set of ideals of A. There is an error
in [16] which deals with this question, and the complete answer is not
known. The best we have at the moment is the following.

Let A be a prime ring with the property that every isomorphism
between ideals is the restriction of an automorphism. Then πA is the
set of ideals of A if and only if A satisfies the following.

(i) A is a simple ring with identity of characteristic 0, or
(ii) pA = 0 for some prime and A is simple with identity or a

certain algebra over Zp which is not an algebra over any other field, or
(iii) A is additively torsion-free and reduced and a principal ideal

domain such that each proper homomorphic image is isomorphic to
some Zn.

In [1] a special radical was called a dual special radical if it is the up-
per radical defined by a (special) class of subdirectly irreducible rings.
In [17] an intermediate type of radical was introduced. If R is a special
radical with semi-simple class S, a ring B ∈ S is said to be S-subdirectly
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irreducible if
⋂
{J ⊳ B : B/J ∈ S} 6= 0. We say that R is extraspecial

if every ring in S is a subdirect product of S-subdirectly irreducible
rings. Clearly dual special ⇒ extraspecial ⇒ special. Neither implica-
tion is reversible. The first example of a special but not extraspecial
radical was given by Beidar [18]. It is not known whether any of the
“standard” radicals is extraspecial (apart from the dual ones). France-
Jackson [19] has shown that the prime radical is extraspecial if and
only if the lattice of special radicals is atomic.

3 The Lemma

The result from [1] which is now known as the Andrunachievici lemma
is the following.

If I ⊳J ⊳A and I∗ is the ideal of A generated by I, then (I∗/I)3 = 0.
This is a very useful result in radical theory and ring theory, and some
generalizations have been found. For alternative rings Hentzel and
Slater [20] showed that

⋂
(I∗/I)n = 0. Then (modulo some difficulty

with 2- and 3-torsion) Pchelintsev [21] showed that (I∗/I)n = 0 with
n ≤ 4 · 56. Hentzel [22] reduced the bound to 4. Medvedev [23] proved
a version for Jordan rings.
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product of algebras that is analogous to wreath product of groups.
To prove its usefulness we will discuss applications to embedding
theorems and growth functions of algebras.
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Groebner-Shirshov bases methods for GDN

algebras and PBW type theorems

L.A.Bokut*, Yuqun Chen, Zerui Zhang

(*plenary invited speaker)

Abstract

We review some of our recent results for Gelfand-Dorfman-
Novikov (GDN) algebras invented independently by I.M.Gelfand
– I.Ya. Dorfman (Funk. Anal. App., 1979) and A.A. Balinskii
– S.P.Novikov (Doklady AN USSR,1985). We are dealing with
GDN (super)algebras and GDN-Poisson algebras.

Keywords: Groebner-Shirshov bases, GDN (super)algebras,
GDN-Poisson algebras, PBW type theorems.

1 Definitions

Definiton 1. A left GDN algebra A is a vector space with a binary
linear operation ◦ satisfying the two identities

x ◦ (y ◦ z)− (x ◦ y) ◦ z = y ◦ (x ◦ z)− (y ◦ x) ◦ z (left symmetry),

(x ◦ y) ◦ z = (x ◦ z) ◦ y (right commutativity).

Definiton 2. A GDN superalgebra is a Z2-graded vector space A =
A0

⊕
A1 with a bilinear operation ◦ satisfying

x◦(y◦z)−(x◦y)◦z = (−1)|x||y|(y◦(x◦z)−(y◦x)◦z) (left symmetry),

(x ◦ y) ◦ z = (−1)|y||z|(x ◦ z) ◦ y (right commutativity)

c©2017 by L.A. Bokut, Yuqun Chen, Zerui Zhang
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for any x, y, z ∈ A0 ∪ A1.
Definiton 3. A GDN-Poisson algebra A is a vector space with two
bilinear operations “ · ” and “ ◦ ” such that (A, ·) forms a commutative
associative algebra and (A, ◦) forms a GDN algebra with the compati-
bility conditions:

(x · y) ◦ z = x · (y ◦ z),

(x ◦ y) · z − x ◦ (y · z) = (y ◦ x) · z − y ◦ (x · z), x, y, z ∈ A.

We only consider GDN-Poisson algebras with unit e with respect
to ·.
Definiton 4. A commutative associative differential superalgebra is a
Z2-graded associative algebra A = A0 ⊕A1 with a linear derivation D

of degree 0, which satisfies

D(u · v) = Du · v + u ·Dv, u · v = (−1)|u||v|v · u,

for any u, v ∈ A0 ∪ A1.
Definiton 5. A special GDN-Poisson admissible (A, ·, ∗,D) is a vector

space with bilinear operations ·, ∗ and a linear operation D such that

(A, ·) forms a commutative associative algebra with unit e, (A, ∗) forms

a commutative associative algebra and “·, ∗,D” are compatible in the

sense that the following identities hold :

(x · y) ∗ z = x · (y ∗ z),

D(x ∗ y) = (Dx) ∗ y + x ∗ (Dy),

D(x · y) = (Dx) · y + x · (Dy)− x · y · (De).

2 Linear bases and PBW type theorems

Definition 6. (see [4] for right GDN algebras) We call w a GDN

tableau over a well-ordered set X = X1 ∪X0, if

w = (. . . ((a1,r1+1 ◦ A1) ◦A2) ◦ · · · ◦ An) (left-normed bracketing),

where Ai = (ai,ri ◦· · ·◦(ai,3◦(ai,2◦ai,1)) . . . ) (right-normed bracketing),
1 ≤ i ≤ n, ai,j ∈ X, satisfying the following relations:
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(i) ri ≥ ri+1,
(ii) ai,1 ≥ ai+1,1 if ri = ri+1,
(iii) a1,r1+1 ≥ · · · ≥ a1,2 ≥ a2,r2 ≥ · · · ≥ a2,2 ≥ · · · ≥ an,rn ≥ · · · ≥ an,2.

Definition 7. We call w a GDN supertableau if w is a GDN tableau
which also satisfies
(iv) ai,j 6= at,l, if ai,j, at,l ∈ X1 and j, l ≥ 2,
(v) ai,1 6= ai+1,1, if ri = ri+1 and ai,1, ai+1,1 ∈ X1.

Definition 8. Let [X] be the commutative monoid generated by X

with unit e. We call T = u · w a GDN-Poisson tableau over X, if u =
b1 · · · bm ∈ [X] (each bi ∈ X) and w = (· · · ((a1,r1+1◦A1)◦A2)◦· · ·◦An)
is a GDN tableau over X ∪ {e} (e < x for any x ∈ X) satisfying:
(i) an,2 ≥ b1 ≥ · · · ≥ bm, (ii) if an,2 = e, then m = 0, i.e., T = w.

Theorem 1 [1]. (PBW type theorem in Shirshov form) Let GDN(X)
be a free Gelfand-Dorfman-Novikov algebra, k{X} be a free commu-
tative differential algebra, S ⊆ GDN(X) and Sc a Gröbner-Shirshov
basis in k{X}. Then

(i) S′ = {uDms | s ∈ Sc, u ∈ [DωX],m ∈ N, wt(uDms) = −1} is a
Gröbner-Shirshov basis in GDN(X).

(ii) The set Irr(S′) = {w ∈ [DωX] | w 6= uDts, u ∈ [DωX], t ∈

N, s ∈ Sc, wt(w) = −1} = GDN(X) ∩ Irr[Sc] is a linear basis of
GDN(X|S). Thus, any Gelfand-Dorfman-Novikov algebra GDN(X|S)
is embeddable into its universal enveloping commutative differential
algebra k{X|S}.

Theorem 2 [2]. The set of the GDN-Poisson tableaux over X forms
a linear basis of the free GDN-Poisson algebras.

Theorem 3 [2]. Any GDN-Poisson algebras can be embedded into its
universal enveloping special GDN-Poisson admissible algebras.

Theorem 4 [2]. Any GDN-Poisson algebras A satisfying the identity
x ◦ (y · z) = (x ◦ y) · z + (x ◦ z) · y is isomorphic to a commutative
associative differential algebras.

Theorem 5 [3]. The set of all the GDN supertableaux over X =
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X0 ∪X1 forms a linear basis of the free GDN superalgebra if the cha-
racteristic of the field is not 2.

Theorem 6 [3]. Any GDN superalgebra can be embedded into its
universal enveloping commutative associative differential superalgebra.

Theorem 7 [3]. Let A = GDN(X0∪X1|R)sup = A0⊕A1, where R ⊂

GDN(X0 ∪X1)sup, |X1| < ∞. Suppose there exists a natural number
n such that for any a ∈ A0, ((· · · ((a ◦ a) ◦ a) · · · a) ◦ a) = 0 (n times).
Then there exists q ∈ Z≥0 such that ((· · · ((A ◦A) ◦ A) · · · A) ◦ A) = 0
(q times).
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Arithmetic of π0-critical module

Sofya Afanaseva, Elena Ikonnikova

Abstract

In this paper, for a specific kind of one-dimensional formal
groups over the ring of integers of a local field in the case of
small ramification we study the arithmetic of the formal module
constructed on the maximal ideal of a local field, containing all
the roots of the isogeny. This kind of formal groups is a little bro-
ader than Honda groups. The Shafarevich system of generators
is constructed.

Keywords: formal modules, local fields.

Let K0 be a local field (a finite extension of Qp) with the ring of
integers O0, and a prime element π0; let q = pf be the cardinality of
the residue field K0; let K be a finite extension of the field K0 with the
ring of integers O and a prime element π, e0 the ramification index of
K/K0; let N be the inertia subfield of K/K0 with the ring of integers
ON , and let σ denote the Frobenius automorphism of N/K0.

We denote by ON [[∆]]′ the non-commutative ring of ’power series’∑
ai∆

i, ai ∈ ON with multiplication rule

∆a = σ(a)∆.

There is a natural operation (u, f) 7→ u ◦ f by the elements u of
ON [[∆]]′ on the elements f of N [[X]], defined by equality:

(a∆)(
∑

ciX
i) =

∑
acσi X

qi, a ∈ ON [[∆]]′

and this turns N [[X]] into ON [[∆]]′-module. O[[∆]] also has natural
structure of a left ON [[∆]]′-module.

From now on we assume that e0 < q.

c©2017 by Sofya Afanaseva, Elena Ikonnikova
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It can be shown that each formal O0-module over the ring O is
strictly isomorphic to an O0-typical one, the logarithm of which can be
represented in the form λ(X) = Λ(∆)(X), where

Λ = vu−1, (1)

v ∈ O[∆], deg v < h+ 1,

u = π0 − ahB∆h, B ∈ 1 +ON [[∆]]∆.

The pair (u, v) is said to be the type of formal O0-module.
Definition 1. Formal O0-module with height h is π0-critical if its

type (u, v) satisfies the condition

v ≡ 0 mod (π0,∆
h)

We will consider only this kind of formal O0-modules. For them,
and only for them, homomorphism [π0] can be expressed as

[π0](X) = π0X + π0f(X)X2 + chX
qh + . . . , ch ∈ O∗

K ,

where f(X) is a polynomial of degree qh− 3 with integral coefficients.
Let F be a π0-critical formalO0-module of type (u, v). Then v(∆) =

π0 − πr1 − . . .− πe0−1re0−1, where ri =
h∑

j=1
ρ
(i)
j ∆j, 0 < i < e0.

Let λ =
e0−1∑

i=0
πiλi(X), λi(X) ∈ ON [[X]] and µ =

e0−1∑

i=0
πiµi(X),

where

µ0(X) = Bλσh

0 (X);

µi(X) = −a−1
h ρ

(i)
h

(

λσh

0 (X)−
aσ

h

h µσh

0

π0
(Xqh)

)

−
a−1
h riahµ0(X)

π0
,

0 < i < e0. (2)

The series µi(X) depends only on µ0 and λ0.

Theorem 1. Let F be a formal O0-module over O of type (u, v) with
logarithm λ(X). Then
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1. µ is the logarithm of a π0-critical formal O0-module F1 of type
(u1, v1), where u1 = uσ

h
B−1, v1 = a−1

h vah.

2. f := [π0

ah
]F,F1

= µ−1(π0

ah
λ) is a homomorphism from F to F1 and

f ≡ Xqh mod π0.

So, for π0-critical formal groups we also have a surjective (but not
injective) operator A : F 7→ F1 and a sequence of homomorphisms fm:

F
f
→ F1

f1
→ F2 → · · · → Fn−1

fn−1

→ FN .

We denote by L a finite extension of K which contains Ker[πn
0 ],

with ring of integers OL, maximal ideal M, prime element Π. Let T
be the inertia subfield in L/K0, with ring of integers OT , and R the
Teichmüller set of representatives in OT ; and e the index of ramification
of L/K0. The group law F induces on M the structure of formal O0-
module F (M).

Let g : ON [[t]] → OK be a ring homomorphism, mapping t
to π. There exists a formal O0[[t]]-module Ft(X,Y ), such that
g∗(Ft(X,Y )) = F (X,Y ) (g∗ applies g to the coefficients). Suppose
U(∆) is a type of Ft and λt is its logarithm. Define the action ∆ on
the series from OT [[X]][[t]]X as follows:

∆
(∑

aijX
itj
)
=
∑

aσijX
qitqj.

The Artin-Hasse maps EFt and lFt are given by:

EFt(f) = λ−1
Ft

(π0U(∆)−1f),

lFt(f) = π−1
0 U(∆)λFt(f).

An element ω ∈ F (M) is called primary (πn
0 -primary) if the exten-

sion L(ω̃)/L, where [πn
0 ]F (ω̃) = ω, is unramified.

Let a ∈ OT , ξ ∈ Ker[πn
0 ] \ Ker[πn−1

0 ], ξ =
∑

∞

i=1 αiΠ
i, ξ(X) =∑

∞

i=1 αiX
i ∈ OT [[X]]. In [3] it was proved that the element

PF (a) = EFt

(

πn−1
0 (

∑

i>0

αiai∆
i)λFt(ξ(X))

)

|X=Π, t=π,
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where ai = a+ aσ + . . .+ aσ
i−1

is πn
0 -primary in F (ML).

Let G0 and Gρ, 0 < ρ < fh be formal O0-modules, strictly iso-

morphic to An−1F , for which g0(x) = πn−1x + xq
h

and gρ(x) =

πn−1x + πn−1x
pρ + xρ

h
are distinguished isogenies. Let E0

n, E
ρ
n be the

isomorphisms AG0 −→ AnF and AGρ −→ AnF respectively.

Theorem 2. The elements

{PF (a), E
0
n(θΠ

i), Eρ
n(θΠ

i), θ ∈ R, 0 < i <
eqh

qh − 1
+ 1, qh ∤ i} (3)

form a system of generators of the O0-module F (ML).
Acknowledgments. Research is supported by the Russian Science

Foundation grant 16-11-10200
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Semidirect product of pseudonormed 

rings and semi-isometric isomorphism 

S.A. Aleschenko 

Abstract 

We determine the pseudonorm for the semidirect product of 

pseudonormed rings. We study sufficient conditions for keeping a 

semi-isometric isomorphism (semi-isometric on the left, semi-

isometric on the right) when taking a semidirect product of 

pseudonormed rings. 

Keywords: pseudonormed rings, quotient rings, ideal, 

isometric homomorphism, semi-isometric isomorphism, semidirect 

product of pseudonormed rings. 

We will consider that a pseudonormed ring is a ring R  which may be 

non-associative and has a pseudonorm (see [1], definition 2.3.1). 

The following theorem on isomorphism is often applied in algebra 

and, in particular, in the ring theory: 

Theorem 1. If A  is a subring of a ring R and I  is an ideal of the ring 

R , then the quotient rings  /A A I  and   /A I I  are isomorphic 

rings. 

In particular, if 0A I  , then the ring A  is isomorphic to the ring 

  /A I I , i.e. the rings A  and   /A I I  possess identical algebraic 

properties. 

Since it is necessary to take into account properties of pseudonorms 

when studying the pseudonormed rings, then one needs to consider 

isomorphisms which keep pseudonorms. Such isomorphisms are called 

isometric isomorphisms. 
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Theorem 1 does not always take place for pseudonormed rings. As 

it’s shown in Theorem 2.1 from [2], it is impossible to tell anything more 

than the validity of the inequality     r r    in case 0A I  .

The case when A  is an ideal of a pseudonormed ring  ,R   was

studied in [2], the case when A  is a one-sided ideal of a pseudonormed 

ring  ,R   was studied in [3].

The following notions were introduced in [2] and [3]: 

Definition 1. Let  ,R   and  ,R   be pseudonormed rings. An

isomorphism : R R   is called a semi-isometric isomorphism (a semi-

isometric on the left, a semi-isometric on the right) if there exists a 

pseudonormed ring  ˆˆ,R   such that the following conditions are valid:

1) the ring R  is an ideal (a left ideal, a right ideal) in the ring R̂ ;

2)    ˆ r r   for any r R ;

3) the isomorphism   can be extended up to an isometric

homomorphism    ˆˆˆ : , ,R R    of the pseudonormed rings, i.e.

     ˆ ˆˆ ˆinf kerr r a a       for all ˆr̂ R .

The following theorems were proved in [2] and [3]: 

Theorem 2. Let  ,R   and  ,R   be pseudonormed rings and

: R R   be a ring isomorphism. The isomorphism    : , ,R R  

is a semi-isometric isomorphism iff the inequalities 

 

 
    

a b
a a

b


  




  and 

 

 
    

a b
b b

a


  




  are true for 

any  , \ 0a b R .

Theorem 3. Let  ,R   and  ,R   be pseudonormed rings and

: R R   be a ring isomorphism. The isomorphism    : , ,R R  

is a semi-isometric isomorphism on the left (on the right) iff the 
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inequalities       a b a b              b a a b       and

    a a    are true for any ,a b R .

This paper is a continuation of [2] and [3] and it is devoted to the 

study of keeping a semi-isometric isomorphism on a semidirect product of 

pseudonormed rings. 

Let R  and S  be rings and on S  be defined a multiplication operation 

of elements of S  by elements of R  from the left and the right such that 

the group  S   becomes a right and a left R -module. Let Q  be the

direct sum of the groups  R   and  S  . Let's define on Q  a

multiplication operation: 

 1 2 1 2 1 2 1 2 1 2,q q s s r s s r r r       

for any 
1 2,s s S  and 

1 2,r r R . It's easy to see that Q  is a ring. 

Proposition 1. Let  ,R   and  ,S   be pseudonormed rings and the

inequalities      s r s r      and      r s r s      are fulfilled

for any s S  and r R . Then the function      ,s r s r     is a

pseudonorm on the ring Q . 

The ring  ,Q   is called a semidirect product of pseudonormed rings

 ,S   and  ,R  .

Theorem 4. Let  ,Q   be a semidirect product of pseudonormed

rings  ,S   and  ,R  ,  ,Q   be a semidirect product of pseudonormed

rings  ,S   and  ,R  . Let    : , ,R R    and    : , ,S S  

be semi-isometric isomorphisms on the left such that the inequalities 

      s r s r       and       r s r s       are fulfilled for

any s S  and r R . Then the mapping    : , ,Q Q    given by

       , ,s r s r    is a semi-isometric isomorphism on the left.

Theorem 5. Let  ,Q   be a semidirect product of pseudonormed

rings  ,S   and  ,R  ,  ,Q   be a semidirect product of pseudonormed
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rings  ,S   and  ,R  . Let    : , ,R R    and    : , ,S S  

be semi-isometric isomorphisms on the right such that the inequalities 

      s r s r       and       r s r s       are fulfilled for

any s S  and r R . Then the mapping    : , ,Q Q    given by

       , ,s r s r    is a semi-isometric isomorphism on the right.

Theorem 6. Let  ,Q   be a semidirect product of pseudonormed

rings  ,S   and  ,R  ,  ,Q   be a semidirect product of pseudonormed

rings  ,S   and  ,R  . Let    : , ,R R    and    : , ,S S  

be semi-isometric isomorphisms such that the inequalities 

       s r s r        and        r s r s        are

fulfilled for any s S  and r R . Then the mapping    : , ,Q Q  

given by        , ,s r s r    is a semi-isometric isomorphism too.
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Properties of the lattice of ring 

topologies 

V.I. Arnautov, G.N. Ermakova 

Abstract 

A nilpotent ring R
~

 and two ring topologies  ''~  and *  on 

R
~

 are constructed such that *  is a coatom in lattice of all ring 

topologies of the ring R
~

and such that between },''~inf{
d

  and 

*},''~inf{    there exists an infinite chain of ring topologies, 

where 
d

  is the discrete topology. 

Keywords: nilpotent ring, ring topology, lattice of ring 

topologies, unrefinable chains, coatoms, infimum of ring 

topologies. 

1 Introduction  

After Markov A.A. has investigated in 1946 the question of the existence 

of nondiscrete Hausdorff group topologies on infinite groups, a similar 

question naturally appeared for other algebraic systems, and in particular 

for infinite rings. 

The present paper is devoted to the study of the lattice of ring 

topologies, and consists of two parts. An overview of some known results 

is given in the first part of the paper. The new result of the paper is an 

example that between },''~inf{ d  and *},''~inf{   there exists an infinite 

chain of ring topologies, where d  is the discrete topology (see Theorem 

4 of the second part of the paper). 
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2 Review of previously obtained results 

A method of specifying such topologies on countable groups was 

indicated, a similar question naturally appeared for other algebraic 

systems, and in particular for infinite rings. 

Definition 1. As usual, a partially ordered set ),( M  is called a 

lattice, if there are },inf{ ba  and },sup{ ba  for any elements Mba , . 

Definition 2. As usual, a lattice ),( M  is called modular if 

}},inf{,sup{}},,inf{sup{ cbacba   for any elements Mcba ,,

such that ca  .

It is known that for any ring the lattice of all ring topologies has the 

form:  
 discrete topology

 ............. coatoms 

............................ 

........................ 

........................ 

 ............... atoms 

 antidiscrete topology

Moreover, for any nonzero ring (i.e. }0{R ) the lattice contains a 

discrete topology and an antidiscrete topology. In this case, the 

antidiscrete topology is a coatom. 

It is clear that for any finite simple ring the lattice has only two 

topologies (discrete and antidiscrete topologies). 

An example of an infinite ring for which the lattice of all ring 

topologies contains only two topologies was constructed in [3]. 

Theorem 1. [4].For any countable ring, the lattice of all ring 

topologies contains two in the degree of the continuum coatoms, in each 

of which the topological ring is a Hausdorff space.  

Definition 3. As usual, a chain 
n

aaa  
21

 of elements of a 

partially ordered set ),( M  is called unrefinable  if  for any 11  ni  

between elements 
i

a  and  
1i

a  there are no other elements. 

It is known the following result. 
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Theorem 2. If ),( M  is a modular lattice and 
n

aaa  
21

 is a 

finite unrefinable chain of elements, then nk   for any chain 

'''
21 k

aaa    of elements of the set M , such that :

2.1. '
11

aa   and '
kn

aa  ; 

2.2. },sup{'
11

aaa   and },sup{' aaa
nk

 ; 

2.3. },inf{'
11

aaa   and },inf{' aaa
nk

 . 

Since the lattice of all ring topologies of a nilpotent ring is not 

modular (see [1]), then the question naturally arises of the validity of 

Theorem 2 for this lattice. 

Theorem 3. [2] If R  is a nilpotent ring and 
n

aaa  
21

 is an 

unrefinable chain of ring topologies, then nk   for any chain 

'''
21 k

aaa    of ring topologies such that '
11

aa   and '
kn

aa  . 

3 Notations and new results 

Notations: N is the set of all natural numbers;

R  is the set of all matrices of the dimension 33    over the field of  

real numbers of the form 





















000

00

0

23

1312

a

aa
 

'R  is the set of all matrices of  R  for which  0
2313
 aa ; 

''R is the set of all matrices of R  for which  0
1312
 aa ;  

iR = R , 'iR = 'R  and  ''
i

R = ''R for every natural number  i ; 

R
~ =



1i
i

R ,  'R  =


1

'
i

i
R  and ''R  = ''

1




i
i

R  

}0)~(|
~~{

~
niifgprRgV

in
 ;

Remark 1. It is easy to see that  R  with the usual operation of matrix  

is a ring and 03 R , and  ( 'R )
2

=  ( ''R )
2

= 0 .

Proposition 1. For the ring R  the following statements are true:
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1.1. The collection B'={ ' |iV R i ОN} is a basis of 

neighborhoods of  zero for a ring  topology '~  on the ring R ;

1.2. The collection  B''={ iRV
i

|''
~
 N} is a basis of

neighborhoods of zero for a ring topology ''~  on the ring R ;

Theorem 4. Let '~  and ''~ be ring topologies on the ring
k

R
~

defined in Proposition 1, 
d

~ is the discrete topology on the ring R
~

 and 

*  is a coatom in the lattice of all ring topologies on the ring R
~

 such 

that '~*   . Then between the topologies }''~,~inf{ 
d

and 

}''~*,inf{   there exists a chain of ring topologies on the ring R
~

which is infinitely decreasing and infinitely increasing. 
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The semireflexive subcategories

Dumitru Botnaru

Abstract

A categorical definition of the notion of semireflexive subca-
tegory is formulated and some its properties are proved.

Key words: semireflexive subcategory, reflective subcate-
gory, local convex topological Hausdorff vector spaces.

In the category C2V of the local convex topological Hausdorff vector
spaces we use the following notations: R - the class of all nonzero
reflective subcategories of category C2V; S - the subcategory of spaces
with weak topology; Π - the subcategory of complete spaces with a
weak topology; if B is a class of monomorphisms, andA - a subcategory,
then SB(A) is the subcategory of B-subobjects of objects from A. The
subcategory L is called c-reflexive, if S ⊂ R and the functor l : C2V → L

is left exact (see [2]).
Let L,R ∈ R. Then λR(L) is the full subcategory of all Z objects

with the property: for any object A ∈ |L| any morphism f : A → Z
extends through R-replica rA of object A: f = g · rA for an g. It is
known that λR(L) ∈ R.

Definition 1. Let A be a subcategory and L a reflective subcategory

of category C2V. The object X is called (L,A)-semireflexive, if his L-

replica belongs to subcategory A. The full subcategory of all (L,A)-
semireflexive objects is called the semireflexive product of subcategories

L and A and is denote by R = L ⋆sr A.

We mention the following properties of the semireflexive product
(see [3]).

Proposition 1. The semireflexive product L⋆srA is closed relative

to (εL)-subobjects and (εL)-factorobjects.

c©2017 by Dumitru Botnaru
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Proof. Let R = L ⋆sr A, A ∈ |R|, b : X → A ∈ |εL|, and lX : X →

lX L-replica of X. Because b ∈ εL, we have

lX = f · b (1)

for an f and f is L-replica of A. So lX ∈ |A|, and X ∈ |R|.
Let R be closed relative to (εL)-factorobjects. Let A ∈ |R|, t : A →

Y ∈ |εL|, and lA : A → lA L-replica of A. Then

lA = g · t (2)

for an g which is L-replica of Y . So Y ∈ |R|.
Proposition 2. Let L ∈ R and A be a subcategory of category

C2V. Then L ⋆sr A = SεL(L ∩A).
Proof. Let X ∈ |L ⋆sr A|, and lX : X → lX L-replica of X. Then

lX ∈ |A|, or lX ∈ |L ∩ A|, and lX ∈ εL. So X ∈ SεL(L ∩A).
Be it now X ∈ |SεL(L∩A)|. Then there exist an object Z ∈ |L∩A|

and a morphism b : X → Z ∈ |εL|. It is clear that b is L-replica of X
and lX = Z ∈ |A|. So X ∈ |L ⋆sr A|.

Corollary 1 [3]. Let L be c-reflective subcategory, and A a

subcategory of category C2V. Then L⋆sr A is a reflective subcategory of

category C2V.

Proof. Indeed, ((εL)⊤, εL) is a structure of left factorization, and
L ∩ A is a reflective subcategory of category C2V. If tX : X → tX is
(L ∩ A)-replica of X, and

tX = iX · pX (1)

is ((εL)⊤, εL)-factorization of tX , then pX is (L ⋆sr A)-replica of X.
Definition 2. Let L and R be two reflective subcategories of

category C2V. R is called L-semireflexive, if it is closed relative to

(εL)-subobjects and (εL)-factorobjects. The class of all L-semireflexive

subcategories we denote by R
s
f (εL).

Examples. 1. Let L1 ⊂ L2. Then εL2 ⊂ εL1 and R
s
f (εL1) ⊂

R
s
f (εL2).
2. Rs

f (εC2V) = R.
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Theorem 1. Let R ∈ R
s
f (εL) and H ∈ R. Then the following

conditions are equivalent:

1. L ⋆sr H = R.

2. L ∩R = L ∩H.

Proof. 1 ⇒ 2. L ∩ R ⊂ L ∩ H. Indeed, let A ∈ |L ∩ R|. Then
lA = A ∈ |R|. So lA ∈ |H| or A ∈ |H|, i.e. A ∈ |L ∩ H|.

L ∩H ⊂ L ∩R. Let A ∈ |L ∩ H|. Then A ∈ |R|, or A ∈ |L ∩ R|.

2 ⇒ 1. L ⋆sr H ⊂ R. Let A ∈ |L ⋆sr H| and lA : A → lA is L-
replica to A. Then lA ∈ |L ∩H| = |L ∩R|. Also lA ∈ |R| and because
R ∈ R

s
f (εL) it follows that A ∈ |R|.

R ⊂ L ⋆sr H. Let A ∈ |R| and lA : A → lA is L-replica of A.
Because R ∈ R

s
f (εL) it follows that lA ∈ |R|. Also lA ∈ |L ∩ R| =

|L ∩ H|, ie A ⊂ L ⋆sr H.

Corollary 2. Let R ∈ R
s
f (εL). The following statements are

true:

1. R = L ⋆sr (L ∩R).

2. Let R = L ⋆sr H. Then L ∩R = L ∩H.

3. Let R = L ⋆sr H, T ∈ R and L ∩ R ⊂ T ⊂ H be. Then
R = L ⋆sr T .

Theorem 2. Let R ∈ R
s
f (εL). The following statements are

true:

1. For any T ∈ R and L ⊂ T we have R = T ⋆sr R.

2. Let H ∈ R and L ∩R ⊂ H ⊂ λR(L). Then R = L ⋆sr λR(H).

3. For the semireflexive product both left and right factors are not
uniquely determined.

Proof. 1. If L ⊂ T , then εT ⊂ εL.

2. We will check that L∩R = L∩H. The inclusion L∩R ⊂ L∩H

is evident.

L ∩H ⊂ L ∩R. Let A ∈ |L ∩ H|. Then A ∈ |λR(L)|.

So the identical morphism 1 : A → A extends through rA. Whence
it follows that A ∈ |R|, or A ∈ |L ∩R|.

3. It results from p.1 and p.2.

Using the above notations we will examine some examples.
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1. For the subcategories of semireflexive spaces sR we have: sR =
S ⋆sr qΓ0, where qΓ0 is the subcategory of quasicomplete spaces ([4]).

2. In the work [1] are defined the semireflexive inductive spaces and
is proved that iR = Sh ⋆sr Γ0, where Sh is the subcategory of Schwatz
spaces, and Γ0 - the subcategory of complete spaces.

3. In the papers [4, 5] are defined the locally complete spaces (the
subcategory lΓ0). We prove that lΓ0 ∈ R ∈ R

s
f (εS) ([4] Affirmation

2.5).
4. Rs

f (εS)∩R(Eu) = {C2V}, where R(Eu) is the class of Eu-reflective
subcategories, i.e. the needles L ∈ R, for which S ⊂ L.
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On some groupoids of small order

Vladimir Chernov, Nicolai Moldovyan, Victor Shcherbacov

Abstract

We count the number of groupoids of orders 2 and 3 with
some Bol-Moufang type identities.

Keywords: groupoid, left (right) semi-medial identity, Ma-
nin identity, associativity.

1 Introduction

A binary groupoid (G, ·) is a non-empty set G together with a binary
operation “·”. This definition is very general, therefore usually grou-
poids with some identities are studied. For example, groupoids with
associative law (semi-groups) are investigated.

Here we continue the study of groupoids with some Bol-Moufang
type identities [5, 1, 8]. A groupoid (Q, ∗) is called a quasigroup, if
the following conditions are true [1]: (∀u, v ∈ Q)(∃!x, y ∈ Q)(u ∗ x =
v& y ∗ u = v).

For quasigroups and semigroups the following natural problems are
studied: how many quasigroups and semigroups of small order does
exist? The number of semigroups of orders up to 8 is given in [7]; the
number of quasigroups of orders up to 11 is given in [6, 10].

2 Some results

An original algorithm is elaborated and the corresponding program is
written for generating of groupoids of small (2 and 3) orders with some
Bol-Moufang identities, which are well known in quasigroup theory.

c©2017 by Vladimir Chernov, Nicolai Moldovyan, Victor Shcherbacov

51



Vladimir Chernov, et al.

The studied below identities have the property that any of them
defines a commutative Moufang loop [2, 1, 6, 8] in the class of loops
(left (right) semimedial identity, Cote identity and its dual identity,
Manin identity and its dual identity) or in the class of quasigroups
(identity (xy ∗ x)z = (y ∗ xz)x and its dual identity).

To verify the correctness of the written program the number of
semigroups of order 3 was counted. The obtained result coincide with
the well known, namely, there exist 113 semigroups of order 3.

2.1 Groupoids with left semi-medial identity

Left semi-medial identity in a groupoid (Q, ∗) has the following form:
xx∗yz = xy∗xz. Bruck [2, 1, 8] used this identity to define commutative
Moufang loops in the class of loops.

There exist 10 left semi-medial groupoids of order 2. There exist 7
non-isomorphic left semi-medial groupoids of order 2, five of them are
semigroups [10].

∗ 1 2

1 1 1
2 1 1

⋆ 1 2

1 1 1
2 1 2

◦ 1 2

1 1 1
2 2 2

· 1 2

1 1 2
2 1 2

⋄ 1 2

1 1 2
2 2 1

⊙ 1 2

1 2 1
2 2 1

• 1 2

1 2 2
2 1 1

There exist 399 left semi-medial groupoids of order 3.

Similar results are true for groupoids with right semi-medial identity
xy ∗ zz = xz ∗ yz. It is clear that the identities of left and right semi-
mediality are dual. In other words, they are (12)-parastrophes of each
other [1, 8].

It is clear that groupoids with dual identities have similar proper-
ties, including the number of groupoids of a fixed order.
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2.2 Groupoids with Cote identity

The identity x(xy ∗ z) = (z ∗ xx)y is discovered in [3]. Here we call it
the Cote identity.

There exist 6 groupoids of order 2 with Cote identity. There exist
3 non-isomorphic in pairs groupoids of order 2 with Cote identity.

There exist 99 groupoids of order 3 with Cote identity.
Similar results are true for groupoids with the identity (z ∗ yx)x =

y(xx ∗ z), which is the (12)-parastrophe of Cote identity.

2.3 Groupoids with Manin identity

The identity x(y ∗ xz) = (xx ∗ y)z we call Manin identity [4]. The
following identity is dual to Manin identity: (zx ∗ y)x = z(y ∗ xx).

There exist 10 groupoids of order 2 with Manin identity. There exist
7 non-isomorphic in pairs groupoids of order 2 with Manin identity.

There exist 167 groupoids of order 3 with Manin identity.

2.4 Groupoids with identity (xy ∗ x)z = (y ∗ xz)x

Some properties of identity (xy∗x)z = (y∗xz)x are given in [9, 8]. The
following identity is dual to the identity (2.4): z(x ∗ yx) = x(zx ∗ y).

There exist 6 groupoids of order 2 with identity (2.4). There exist
3 non-isomorphic in pairs groupoids of order 2 with (2.4) identity. Any
of these groupoids is a semigroup.

There exist 117 groupoids of order 3 with identity (2.4).
Acknowledgments. Authors thank Dr. V.D. Derech for his in-

formation on semigroups of small orders.
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Subtractive Topological Quasigroups

Liubomir Chiriac, Liubomir Chiriac Jr, Natalia Josu

Abstract

In this paper we extend some results of the theory of topo-
logical groups to the class of subtractive topological quasigroups
with (n,m)-identities.

Keywords: subtractive topological quasigroups, groupoid
with (n,m)-identities.

1 Introduction

In this paper we study a special class of topological groupoids with
a division, namely, the class of subtractive topological quasigroups.
We proved that, if P is an open compact set of a subtractive topo-
logical quasigroup G, then P contains an open compact subtractive
subquasigroup Q. This result was obtained for topological groups by
L.Pontrjagin (see [1]). The established results are related to the results
of M. Choban and L. Chiriac in [3] and to the research papers [4,5,6].

2 Basic notions

A non-empty set G is said to be a groupoid relatively to a binary ope-
ration denoted by {·}, if for every ordered pair (a, b) of elements of G,
there is a unique element ab ∈ G.

A groupoid (G, ·) is called a quasigroup if, for every a, b ∈ G, the
equations a · x = b and y · a = b have unique solutions (see [2]).

A groupoid (G, ·) is called subtractive if it satisfies the laws b·(b·a) =
a and a · (b · c) = c · (b · a), for all a, b, c ∈ G.

c©2017 by Liubomir Chiriac, Liubomir Chiriac Jr, Natalia Josu
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We consider a groupoid (G,+). For every two elements a, b ∈

(G,+) , denote

1 (a, b,+) = (a, b,+) 1 = a+ b,

n (a, b,+) = a+ (n− 1) (a, b,+) ,

(a, b,+)n = (a, b,+) (n− 1) + b,

for all n ≥ 2.

If a binary operation (+) is given on a set G, then we shall use the
symbols n(a, b) and (a, b)n instead of n (a, b,+) and (a, b,+)n.

Let (G,+) be a groupoid, n ≥ 1 and m ≥ 1.

The element e of a groupoid (G,+) is called an (n,m)-zero of G if
e+ e = e and n (e, x) = (x, e)m = x, for every x ∈ G.

If e + e = e and n (e, x) = x, for every x ∈ G, then e is called an
(n,∞)-zero. If e + e = e and (x, e)m = x, for every x ∈ G, then e is
called an (∞,m)-zero.

It is clear that e ∈ G is an (n,m)-zero, if it is an (n,∞)-zero and
an (∞,m)-zero.

Remark. In the multiplicative groupoid (G, ·) the element e is

called an (n,m)-identity. The notion of the (n,m)-identity was in-

troduced in [3].

3 Main results

Theorem 1. Let (G, ·) be a multiplicative groupoid, e ∈ G and the

following statements hold:

1. xe = x for every x ∈ G;

2. x2 = x · x = e for every x ∈ G;

3. x · (y · z) = z · (y · x) for all x, y, z ∈ G;
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4. For every a, b ∈ G there exists a unique point y ∈ G such that

ya = b.

Then e is a (2, 1)-identity in G.

Example. Let (G,+) be a commutative additive group with a
zero 0. Consider a new binary operation x · y = x− y. Then (G, ·) is a
subtractive quasigroup with a (2, 1)-identity 0.

Theorem 2. Let (G, ·) be a multiplicative groupoid, e ∈ G and the

following conditions hold:

1. xe = x, for every x ∈ G;

2. b · (b · a) = a, for all a, b ∈ G;

3. a · (b · c) = c · (b · a), for all a, b, c ∈ G;

4. If xa = ya, then x = y.

Then G is a subtractive quasigroup with a (2, 1)-identity e.

Corollary 3. Let (G, ·) be a subtractive quasigroup, e ∈ G and

xe = x for every x ∈ G. Then e is a (2, 1)-identity.

Proposition 4. Let P be a subset of a topological subtractive qua-

sigroup G and e ∈ P . If P1 = P
⋂

eP , then:

1. eP1 = P1

2. If P is open, then P1 is open too.

3. If P is closed, then P1 is closed too.

4. If P is compact, then P1 is compact too.

Proposition 5. Let G be a subtractive quasigroup. Then the map-

ping f : G → G, where f(x) = ex, is an involutary automorphism, i.e.

f = f−1 and f(x · y) = f(x) · f(y), for every x, y ∈ G.
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Theorem 6. Let G be a subtractive topological quasigroup. If P
is an open compact subset, such that e ∈ P , then P contains an open

compact subtractive quaisgroup Q of G.

Theorem 7. Let G be a subtractive topological quasigroup with

(2, 1)-identity e. If P is an open compact subset, such that e ∈ P , then

P contains an open compact subtractive quaisgroup Q with a (2, 1)-
identity e of G.
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Algorithm for constructing finite idempotent

cyclic semirings with commutative addition

Dmitriy Chuprakov

Abstract

The paper deals with finite idempotent cyclic semirings with
commutative addition. The author establishes a connection bet-
ween idempotent cyclic semirings with commutative addition and
ideals of nonnegative integers. An algorithm for constructing
these semirings is presented .

Keywords: finite algebra, semiring, idempotent, integers,
algorithm.

1 Introduction

In this paper we report the algorithm for constructing additive finite
idempotent cyclic semirings by ideal of nonnegative integers.

Studies of finite cyclic semirings with commutative addition were
started in 2010 by A. S. Bestuzhev and E.M. Vechtomov [3,4]. So,
in [4] A. S. Bestuzhev describes the structure of finite commutative
idempotent cyclic semirings that can be imagined as an upper semilat-
tice with the width m ≤ 3. In theorems 3–5 of [5] E.M. Vechtomov
and I.V. Lubyagina describes the structure of finite idempotent cyclic
semirings with noncommutative addition ,,modulo“ finite idempotent
cyclic semirings with commutative addition.

c©2017 by Dmitriy Chuprakov
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2 A representation of fic-semirings through

ideals of nonnegative integers

Definition 1. A semiring is a set S equipped with associative binary

operations addition (+) and multiplication (·), such that multiplication

left and right distributes over addition.

A semiring S is called idempotent if s + s = s for all s ∈ S and it
is called commutative if both operations are commutative. A semiring
S with a neutral element 0 of 〈S,+〉, satisfying the property of mul-
tiplicativity (i. e., x · 0 = 0 · x = 0 for all x ∈ S), is called a semiring
with zero. A semiring S with a neutral element 1 of 〈S, ·〉 is called a
semiring with identity.

Definition 2. A semiring S with identity 1 is called cyclic if there

exists a generating element a 6= 1 such that every nonzero element in

S is equal to an for some nonnegative integer n.
If S is an commutative idempotent semiring, then the order ≤

such that x ≤ y ⇔ x + y = y turns 〈S,+〉 into an upper semilattice
[1, pp. 151 − 152].

If S is an commutative finite cyclic semiring S with generator a ∈ S
and order n+ 1, then an+1 = an [6].

In this paper we study a commutative finite idempotent cyclic se-
mirings without zero, let us call it by fic-semiring.

Proposition 1 [6]. A fic-semiring S with order n + 1 is unique

determined by tuple

P = (p0, p1, . . . , pn) ∈ {0, 1, . . . , n}n+1, api = 1 + ai. (1)

Let us denote by Nn the semiring 〈{0, 1, . . . , n},⊕,⊙ 〉 with ope-
rations x ⊕ y = min{x + y, n} and x ⊙ y = min{xy, n} for all
x, y ∈ {0, 1, . . . , n}.

Theorem 1 [7]. The following properties of set I = {pi : i ∈ Nn}

of all elements of tuple (1) are true:

1) I = {i ∈ Nn : pi = i};
2) I = {i ∈ Nn : ai > a0};
3) I is ideal of semiring Nn.
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The semiring Nn has properties like semiring of nonnegative inte-

gers. Therefore, I =
{⊕k

i=1
αi ⊙ gi : αi ∈ Nn

}
for some g1, . . . , gk ∈

Nn. The set G = {g1, . . . , gk} is called basis of I. If equation
gj =

⊕k
i=1

αi ⊙ gi consequences αj = 1 and αi = 0 for all i 6= j,
then the basis G is called reduced.

3 Algorithm for constructing fic-semiring

Let I ⊆ Nn is ideal with basis G and Ij = {i ⊕ j : i ∈ Nn}. If fic-
semiring S is determined by tuple 1, then pj = min(I ∩ Ij).

Theorem 2 (A criteria of existence of fic-semirings). A fic-

semiring S with order n+ 1 there exists if and only if I ∩ Ij = Ipj for

all j ∈ Nn.

It follows next algorithm.
Algorithm. Let us consider ideal J of nonnegative integers and

its reduced basis G = {g1, g2, . . . , gk}. Let Ji = {j + i : j ∈ J}, pi =
min(J ∩ Ji) for all nonnegative integer i ≤ n, and let us denote

m = minG, M = maxG, N = min

m−1⋃

j=1

(J ∩ Jj) \ Jpj
)
.

For each reduced basis G and each integer n, such that M < n 6

N or n = M = m, exists unique finite commutative idempotent cyclic

semiring with order n + 1. This semiring is represented by tuple P =
(0, p1, . . . , pn).

Using the Sage Math system for mathematical computations, we
find commutative fic-semirings with small order (Table 1).
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Table 1. Number of commutative FIC-semirings

|G| Order n+ 1 of fic-semiring
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3 - - - - - - - 2 2 6 6 17 17 32

4 - - - - - - - - - - - - - 2

Total 1 2 3 5 6 10 12 20 22 33 38 59 62 91
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Preservation of radicals by generalizations of

derivations

E. P. Cojuhari, B. J. Gardner

Abstract

By results of Anderson and Slin’ko, derivations preserve the
locally nilpotent and nil radicals of algebras over a field of charac-
teristic 0. There is also a well known and elementary result that
derivations preserve idempotent ideals. The radical results are
extended to some (not all) rings, possible generalizations using
generalizations of derivations are examined, the relevance of the
result about idempotent ideals is pointed out and some comments
about the Jacobson radical are included.

Keywords: Algebra, radical, derivation.

1 Introduction

Slin’ko [1] showed that if A is an algebra over a field of characteristic
0, then for every algebra derivation d of A we have d(L(A) ⊆ L(A)
and d(N (A) ⊆ N (A), where L, N are the locally nilpotent and nil
radical respectively. Using similar techniques, Anderson [2] had earlier
obtained such results for algebras with a chain condition. We gene-
ralize these results in two ways, by replacing algebras by rings and
replacing derivations by other mappings or sequences of mappings. We
are unable to do so for all rings and there remain some open questions
relating to the action of these generalizations of derivations. Here are
the generalizations we shall consider.

A higher derivation of a ring R is a sequence (d0, d1, . . . , dn, . . . ) of
additive endomorphisms of R such that dn(ab) =

∑
i+j=n di(a)dj(b),

a, b ∈ R for every n.

c©2017 by E. P. Cojuhari, B. J. Gardner
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If α and β are endomorphisms of R, then an (α, β)-derivation of A
is an additive endomorphism d such that d(ab) = d(a)β(b) + α(a)d(b)
for all a, b ∈ R, so that an ordinary derivation is an (id, id)-derivation.

2 Extension to rings

If a ring R is additively torsion-free, we can extend the multiplication
of R to the divisible hull D(R) of (the additive group of) R. Then
D(R) becomes an algebra over the field Q of rational numbers. Mo-
reover, each endomorphism of R extends uniquely to an algebra endo-
morphism of D(R), and each derivation of R extends uniquely to an
algebra derivation. From these results it is fairly straightforward to
find analogous extensions for higher derivations and (α, β)-derivations.
We thence get a version of the Anderson-Slin’ko results for these rings.

Theorem 1. If a ring R is additively torsion-free, then d(L(R)) ⊆

L(R) and d(N (R)) ⊆ N (R) for every derivation d of R.

For torsion rings the situation is unclear. It is routine to show that
a radical is preserved on torsion rings if and only if it is preserved on
p-rings (i.e. rings whose additive groups are p-groups), but there are
Zp-algebras for which derivations need not preserve L and N , by a
result of Krempa [3]. For mixed (neither torsion nor torsion-free) rings
it is equally unclear.

In the next two sections we shall give results for torsion-free rings.
Analogous results for algebras in characteristic 0 hold, but we shall not
mention this explicitly. In fact our method of proof is to establish the
algebra case first and then proceed to the ring case in imitation of the
procedure of this section.

3 Higher derivations

If a higher derivation has its zeroth mapping equal to the identity
mapping id, then all its other mappings are linear combinations of
compositions of derivations. This result has been proved many times,
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first by Heerema [4] and most recently in a very interesting way by
Hazewinkel [5] and is the source for part of the proof of our next result.
Theorem 2. If a ring R is additively torsion-free, then for every higher
derivation (d0, d1, . . . , dn, . . . ) of R in which d0 is an automorphism we
have dn(L(R)) ⊆ L(R) and dn(N (R)) ⊆ N (R) for all n.

For commutative rings without restriction all mappings of all higher
derivations preserve our two radicals, which coincide with the set of
nilpotent elements, but in non-commutative rings higher derivations
need not preserve the set of nilpotent elements.

4 (α, β)-derivations

The best result we have here is the following.
Theorem 3. If α is an automorphism of a torsion-free ring R, then
d(L(R)) ⊆ L(R) and d(N (R)) ⊆ N (R) for every (α,α)-derivation d of
R.

It is not known how (α, β)-derivations treat radicals when α and β
are unequal automorphisms, but there are examples of non-preservation
for non-automorphisms, equal or not.

5 The relevance of idempotent ideals

In an arbitrary ring, derivations take idempotent ideals into themselves.
There are radical classes which consist entirely of idempotent rings,
but these are not our concern. Even L,N , even the prime radical can
take idempotent values. Consider the algebra over a field which has
a basis {et : t ∈ (0, 1)} (here we refer to the real open interval) and
multiplication given by eteu = et+u if t+u < 1 and 0 otherwise. This is
idempotent and coincides with its prime radical. It is therefore worth
stating
Theorem 4. Let R be any ring, R a radical class. If R(R) is idem-
potent, then it is preserved by derivations, (α, β)-derivations where α
and β are automorphisms and by higher derivations for which the zeroth
mapping is an automorphism.
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6 What about the Jacobson radical?

The behaviour of the Jacobson radical with respect to derivations is
complicated. In the power series ring (algebra) Q[[X]] formal diffe-
rentiation does not preserve it. But Anderson’s results show that it
is preserved by derivations in algebras (characteristic 0) with DCC on
two-sided ideals, and of course the Jacobson radical can be idempotent.
We should also mention the Singer-Wermer Theorem [6] as strengthe-
ned by others: If A is a complex Banach algebra then for any derivation
d, the Jacobson radical contains d(A).

Full details of our results will appear elsewhere.
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Generalized WIP-quasigroups 

Natalia Didurik 

Abstract 

Properties of generalized WIP-quasigroups (OWIP-

quasigroups) are studied. Connections between OWIP- 
quasigroups and Bol quasigroups are established. 

Keywords: quasigroup, loop, WIP-quasigroup, OWIP-

quasigroup,  Bol quasigroup, isotopy, LIP-loop. 

WIP-loops and WIP-quasigroups are classical objects of quasigroup 

theory. A quasigroup L(+)  has the weak-inverse-property if x+I(y+x) = 

Iy for all x, y L and some permutation of the set L  [1, 2, 3]. Nuclei,

autotopies, universality of identities were studied in this quasigroup class.   

Definition.  Quasigroup  K   is called OWIP-quasigroup, if in  K  the

following equality  

  KyxIyxyIx  ,, (1) 

is true, where I and  α are  some permutations of the set K . 

The following quasigroup is OWIP-quasigroup but it is not a WIP-

quasigroup. Here I=(0 1), α = (1 2). 
* | 0 1 2

---+------ 

0 | 1 0 2 

1 | 0 2 1 

2 | 2 1 0 

Lemma 1.  In OWIP -quasigroup  K  the following identity is true

  KzxzIxxzI   ,,11  (2) 

Proof. From (1) we have 
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        zIxxzIxyxxyIxIyxyIxI 1111 ,,    , 

where zIxy 1 .   
□

Theorem 2. OWIP - quasigroup  K  is isotopic to LIP - loop  K ,

where 

yLxRxyyLxRyx baba    ,11
,  (3) 

if and only if in   K  the following equality is true

      yxbIIbRxbyIIb
be

  111
, (4) 

where   beb vevRbbe
b
 , . 

Proof. Let  K be an LIP - loop, i.e., in  K  the following equality is

true:   yyxxIl  . Then using (3) we have 

  yyLxRLxIR babla   1111
. We apply 

1I to both parts of the last 

equality and have    yIyLxRLxIRI babla

111111   . We multiply the 

last equality from the right by expression xIR la

1 and have

   xIRyIxIRyLxRLxIRI lalababla

11111111    . From equality (2) 

we obtain   xIRyIyLxRLI labab

111111    . Further we do the 

following substitutions yLyxRx ba  , and we have

  xRIRyLIxyLI alabb

1111    . If bey  , where bbeb  , then  

,, 1111111
11 xRLILxRIRxRIRLxRLI

bb ebbIalaalabIeb


  

  ,111111
1 xRLILyLIxyLI

bebbIbb


  

       xbyIIbyxbIIbRxyLIILyxILLR
bb ebbbIbe  



11111 ,1

We obtain (4). 

Converse. Let (4) is true. Then we have   yxxyLIIL bb  1
, where

xILLRx
bIbeb

1

1


 . Further we can write 

   yLxRLIxRyIxyLIxyLI bababb

11111111111 ,    . 

Therefore the following equality is true: 
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       xRyIyLxRLIxRyLxRLxRI ababababa

1111111
)2(

1111111111   

  
    ,

,

1111111

11111111

yyLxRLxRRR

yIyLxRLxRI

babaaa

baba













    yyxxIyyxxRR laa   ,111 , where 111  aal RRI  .    □ 

Suppose that any loop isotope  K  of OWIP - quasigroup  K , is

an LIP -loop. In this case in quasigroup  K  the following identity is

holds:  

      KzyxyxzIIzRxzyIIz
ze   ,,,111

 (5) 

where I is a permutation of the set zez tetRzzeK
z
 ,, . 

Lemma 3. If in quasigroup  K  the identity  (5) is true, then in  K  the

following identity holds   KyzIyzyIz  ,, ,    (6)

where  is a map of the set K  into itself. If  is a permutation, then 

 K  is an OWIP - quasigroup.

Proof. Equation   cexcII 1
, where ccec   has unique solutions. 

Indeed,   ceILeILx ccIccI
 



111
11 . If we substitute in (5) 

zeILx zzI
 



11
1 , then       ,, 11 zyzzyIIzyzzyII   

where  zyIt 1 .                 □ 

Theorem 4. Any loop  K  which is isotopic to quasigroup  K  with

identity  (5), is a left Bol loop [4]. 

Proof. It is sufficient to prove this fact for the loop  K , where isotopy

has the form yLxRxyyLxRyx baba    ,11
.  (7) 

From  (5) and (7) we have 

      yLxzIIzRRxLyLzRIRILzR beabbaaba z
   111

. If 

eyLb  , where  e is unit of the loop  K , bae  , then we have

      yLxLzRIRILzRxLyLzRIRILzR bbaababbaaba  11   . 
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We make the following substitutions: zRz a

1 , xLxyLy bb

11 ,    

and have       yxzIRILzxyzIRILz abab  11   . If ez  , 

then we obtain   yxxyIRIL ab  1
, where  xeIRILx ab 1 , 

is a permutation of the set K . Therefore we obtain the following identity: 

      yzxzyzxz     or       ,yzxzyzxz  

Kzyx  ,, . The last means that  K  is a left Bol loop.

□ 

Corollary 5. If quasigroup  K  with identity (5) is an LIP - quasigroup,

then  K  is left Bol quasigroup, i.e., in  K  identity

    zyxxRxzyx
xe  1

holds, where ,xxex  xe tetR
x
 [5].       

Right analogs of presented results are also true. 

Some results of this paper are published in [6].       
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Stable homotopy types and

representation theory

Yuriy A. Drozd

Abstract

We use the technique of the representation theory to the pro-
blem of classification of stable homotopy types of polyhedra. In
particular, we establish when this problem is of finite, tame or
wild type in the sense of the representation theory. In finite and
tame cases a complete description of atoms (indecomposable po-
lyhedra) is obtained.

Keywords: polyhedron, stable homotopy type, bimodule
problem.

We denote by S the stable homotopy category of polyhedra. Its
objects are punctured polyhedra (finite CW-compexes) and the set of
morphisms from X to Y is defined as

S(X,Y ) = lim
−→n

[SnX,SnY ],

where, as usually, [X,Y ] denotes the set of homotopy classes of maps
X → Y and SnX is the n-th itereated suspension of X. It is known [1]
that S is an additive triangulated category, where exact triangles are
those isomorphic to the cone triangles

X
f
−→ Y → Cf → SX

(Cf is the cone of the map f). We denote by Sn the full subcategory of
S consisting of (n−1)-connected polyhedra of dimension at most 2n−1.
Up to suspension, they present in the category S polyhedra having

c©2017 by Yuriy A. Drozd
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cells in at most n subsequent dimensions. Moreover, according to the
generalized Freudenthal theorem [1], polyhedra from Sn are isomophic
in S if and only if they are homotopically equivalent. Let Tn be the
full subcategory of Sn consisting of torsion free polyedra, i.e. such that
all homology groups Hi(X,Z) are torsion free. A polyhedron X ∈ Sn

is called an atom if it is not a suspension of a polyhedron from Sk for
k < n and is not isomorphic (in the category S) to a non-trivial wedge
(or bouquet) X ′ ∨X ′′.

Fix an integer m such that 0 < m < n and set A = Sn−m, B = Sm.
Given a polyhedron X ∈ Sn, there is an exact triangle

S2m−1A → Sn−mB → X → S2mA,

where A ∈ A, B ∈ B. Consider the A-B-bimodule M(A,B) =
S(S2m−1A,Sn−mB). Following [2], we can consider the category El(M)
of elements of this bimodule. Its objects are morphisms from M(A,B)
(A ∈ A, B ∈ B) and a morphism f → g, where f ∈ M(A,B),
g ∈ M(A′, B′) is a pair (α, β), where α : A → A′, β : B → B′ such that
the diagram

S2m−1A
f

−−−−→ SmB

S2m−1α



y



ySmβ

S2m−1A′
g

−−−−→ SmB′.

(1)

is commutative.

Theorem 1. Mapping f to Cf , we obtain an equivalence of the ca-

tegories El(M)/I ≃ Sn/J , where I is the ideal of morphisms of the

form (1) such that β factors through g and J is the ideal of morphisms

which factors both through an object from S2mA and from an object

from Sn−mB. Moreover, J2 = 0, hence isomorphism classes in Sn and

in Sn/J are the same.

Theorem 2. Let A′ = Tn−m, B′ = Tm and El(M′) be the full subcate-
gory of El(M) consisting of such morphisms f ∈ S(S2m−1A,Sn−mB)
that A ∈ A′, B ∈ B′ and Hm(f,Z) = 0. The map f 7→ Cf in-

duces an equivalence of the categories El(M′)/I ′ ≃ Tn/J
′, where
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I ′ = I ∩ El(M′), J ′ = J ∩Tn. Moreover, both I ′2 = 0 and J ′2 = 0, so
this equivalence induces a one-to-one correspondence between isomor-

phism classes in El(M′) and Tn.

Using these results and the technoque of the representation theory
(matrix problems), we describe atoms in the categories Sn for n ≤ 4
and in the categories Tn for n ≤ 7. This description can be found in
[3, 4]. Here we only present its qualitative consequences.

Theorem 3. 1. The atoms in the categories Sn with n ≤ 3 have at

most 4 cells. There is finitely many configurations of such atoms.

2. The category S4 is tame in the sense that its atoms are paramtri-

zed by several “discrete” parameters and at most one “continu-

ous” parameter. Namely, discrete parameters define the configu-

ration of an atom,while the continuous parameter, which appears

for some configurations, is actually a degree of an irreducible po-

lynomial over a field.

Here “configuration” defines the dimensions of cells that occur in
the polyhedron and the elements of homotopy groups that occur in
glueing cells of bigger dimensions to those of smaller dimensions.

Theorem 4. 1. The categories Tn with n ≤ 6 have finitely many

atoms. Each of them has at most 2 atoms if n ≤ 4, at most 4
atoms if n = 5 and at most 6 atoms for n = 6.

2. The category T7 is tame.

Note that atoms from S4 and T7 can have arbitrary number of cells.

Finally, we establish that these results are exhaustive in some sense.

Theorem 5. The classification of polyhedra from Sn for n > 4 or in

Tn for n > 7 is a wild problem in the sense that it contains the problem

of classification of representations of all finitely generated algebras over

a field.
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Generalized Boolean Algebras as Single

Composition Systems for Measure Theory

Ioachim Drugus

Abstract

Considering top element of Boolean algebras optional, Stone
extended their class to “generalized Boolean algebras” (GBAs),
and initiated their research by methods of abstract algebra, but
also stated that his treatment of these structures is not the “most
natural”. Attributing his dissatisfaction to the treatment of
GBAs as “double composition systems”, these are presented here
as commutative monoids with invertible operations, though in
contrast with groups, not uniquely invertible. This treatment as
“single composition systems” turn GBAs into “algebras of mea-
surable objects” suggesting their extensive use in measure theory.

Keywords: (generalized) Boolean algebra, Stone represen-
tation theorem, algebras of sets, measure theory

1 Introduction

In [1-3], Stone laid down foundations of a theory of Boolean algebras
(BAs) in compliance with practices of what was during his times said to
be “modern algebra” and now is called “abstract algebra”. However,
in [3] he remarked that “the most natural approach” to BAs should
“not be based upon the material of the present paper”. To find the
source of his dissatisfaction one needs to identify the difference between
the approach to these structures generally adopted at his time and
today (since this approach did not change over time), and the general
approach to structures specific to “abstract algebra”.

c©2017 by Ioachim Drugus
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The “classical” structures of abstract algebra are groups, rings,
fields, modules, vector spaces and algebras, and in this list, starting
with rings, these structures are abelian groups equipped with additio-
nal operations. Groups are also a generalization of abelian groups and,
thus, abelian groups can be said to be structures central in abstract al-
gebra. The BAs and the wider class of “generalized Boolean algebras”
(GBAs) introduced in [3] are “non-classical” since they do not fit in this
pattern. BAs are generally treated as “double composition systems”,
since conjunction and disjunction are regarded as two “composition
operations” of same importance. One can be expressed through the
other (and negation) due to De Morgan laws, but no reason was ever
presented to prefer one of them to another. Stone presented in [3] an
alternative axiomatics for Boolean algebras and introduced the GBAs,
but also as “double composition systems”.

In this paper, GBAs (in particular, BAs) are treated as special
commutative monoids with disjunction as their fundamental operation,
that is, as “single composition systems”, whereas the conjunction is
defined through the fundamental operation. GBAs have no negation,
De Morgan’s laws make no sense in GBAs, and conjunction cannot
be expressed through other operations like in BAs. This shows that
presenting GBAs as commutative monoids is not a trivial task.

There is yet another reason for this representation – one residing
in the nature of mathematics as a science about measure (in [4], the
measure is related to “foundations of physics”) – in this paper the GBAs
are viewed as algebras of measurable objects – a view supported by the
fact that the main interesting examples of GBAs are the Lebesgue or
Borel measurable sets of finite measure in n-space ([3]). Measure is a
function defined on an algebra of sets in terms of union (even though,
union may be of infinite families). Thus, one expects that the algebras
on which the measure is defined are GBAs in new presentation.

Having adopted here this view, we also need a name (different from
“Boolean ring”) for the new presentation of GBAs. These can be trea-
ted as representing the relation between a whole and its parts, a relation
called “mereosis” in [5], and this suggests using the term “mereologic
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algebra”. But mereology is a wide domain with too many algebras pro-
posed up to now, and other algebras may be also called this manner.
Also, whereas “algebra of mesurables” might be a good name, the form
“measurable(s) algebra” is confusive. Thus, the term “extension alge-
bra” is used here for them, proceeding from idea that what we measure
are “extensions in space or time” – length, volume, duration, etc.

2 Extension algebras

Two symbols, “+” for addition and “–” for “subtraction”, make up the
signature of this algebra, and its axioms are those of a commutative
idempotent monoid as well as those below:

(a+ b)− c = (a− c) + (b− c), (1)

a− (b+ c) = (a− b)− c, (2)

a+ (b− a) = a+ b, (3)

a+ (a− b) = a, (4)

(a− b)− c = (a− c)− (b− c), (5)

a− (b− c) = (a− b) + (a− (a− c)). (6)

Propositions. In extension algebra, the following identities hold:

a− a = b− b, (7)

a− (a− b) = b− (b− a). (8)

Definitions. In an extension algebra,

0 :=a− b, (9)

a ∩ b :=a− (a− b), (10)

a△ b :=(a− b) + (b− a) (11)

Theorem 1. For an extension algebra A, the algebra with A’s
support and with operations 0, △, ∩ defined in (9), (10), (11) is a
Boolean ring (not necessarily with a unit).
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Theorem 2. The axioms of extension algebra are valid in a GBA,
where a− b is defined as the complement of a∩ b in the principle ideal
generated by a, which is a Boolean algebra.

The Boolean rings are known to be presentations of GBAs ([2]).
From the two theorems above, one can infer, that the extension algebra
is a third presentation of GBAs, and this presentation is useful for the
measure theory.
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On the duality of the class of biorthomorphisms

Omer Gok

Abstract

In this study, we examine the adjoint biorthomorphisms on
the order bidual of Archimedean unital f-algebras by using Arens
products.

Keywords: f-algebra, Arens multiplication, order unit, ort-
homorphisms, biorthomorphisms, vector lattice.

1 Introduction

Let E be an Archimedean vector lattice. We say that an ordeer boun-
ded bilinear map T : E × E → E is a biorthomorphisms if its par-
tial maps are orthomorphism on E. Orth(E,E) denotes the set of
all biorthomorphisms of E. The biorthomorphisms were introduced
and studied by R. Yilmaz and K.Rowlands in [10]. The order struc-
ture of the set Orth(E,E) of all biorthomorphisms was given by the
following result in [10], [2]: Let E be an Archimedean vector lattice.
Then, Orth(E,E) is an Archimedean vector lattice. In particular,
lattice operations are defined by (T ∨ S)(x, y) = T (x, y) ∨ S(x, y)
and (T ∧ S)(x, y) = T (x, y) ∧ S(x, y) for all T, S ∈ Orth(E,E) and
(x, y) ∈ E+ × E+. Let A be an Archimedean semiprime f-algebra.
Orth(A) denotes the set of all orthomorphisms,[11]. The mapping
m : Orth(A) −→ Orth(A,A) introduced in [2], [4], [6] and defined by
m(π)(xy) = π(xy) = π(x)y for all π ∈ Orth(A) and (x, y) ∈ A × A is
an injective lattice homomorphism.The question is that when Orth(A)
is a band or order ideal in Orth(A,A).
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2 Preliminary results

Let T ∈ Orth(A,A). Then the mapping T : A × A → A, T (x, y), is
a bilinear separately orthomorphism. t is wellknown that if A is an
f-algebra with unit, then the second order dual A∼∼ is also a Dede-
kind complete f-algebra with unit, [7], [8]. A∼ denotes the order dual
of A and A∼∼ denotes the second order dual of A. By using Arens
multiplication [3], [5], we establish the following bilinear mappings:

T∼ : A∼ ×A −→ A,T∼(f, x) = f(T (x, y)), (1)

T∼∼ : A∼∼ ×A∼ → A∼, T∼∼(G, f)(x) = G(T∼(f, x)), (2)

T∼∼∼ : A∼∼ ×A∼∼ → A∼∼, T∼∼∼(G,F )(f) == G(T∼∼(F, f)), (3)

for all x ∈ A, f ∈ A∼, F,G ∈ A∼∼. For unexplained notion and termi-
nology we refer to the books [1, 9].

3 Embedding of orthomorphisms into biortho-

morphisms

Lemma 2. Let A be an Archimedean semiprime f-algebra with sepa-

rating order dual A∼ and eα be an approximate identity of A∼∼ and

T ∈ Orth(A∼∼, A∼∼). Then, T ∈ m(Orth(A∼∼)) if and only if the

net (T (F, eα) has a supremum in A∼∼) for every 0 ≤ F ∈ A∼∼.

Theorem 3. Let A be an Archimedean semiprime f-algebra with

separating order dual A∼. Then, m : Orth(A∼∼) → Orth(A∼∼, A∼∼),
m(Orth(A∼∼) is an order ideal in Orth(A∼∼, A∼∼).

Theorem 4. Let A be an Archimedean semiprime f-algebra with

separating order dual A∼ and (eα) be an approximate identity of A∼∼.

Then, the following are equivalent:
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(i) The net (T (eα, x)) has a supremum in A∼∼ for all x ∈ A∼∼

and T ∈ Orth(A∼∼, A∼∼).

(ii) m is a lattice homomorphism.

(iii) Orth(A∼∼, A∼∼) is an f-algebra such that m is an algebra

isomorphism.

(iv) m(Orth(A∼∼)) is a band in Orth(A∼∼, A∼∼)

4 Conclusion

In this paper we research the vector space of all orthomorphims on the

second order dual of an Archimedean semiprime f-algebra E is an order

ideal in the set of all biorthomorphisms on the second order dual of E.
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Pseudo-automorphisms of middle Bol loops

Ion Grecu

Abstract

The set of Moufang elements in a middle Bol loop is consi-
dered in the present work. We prove that every inner mapping
of the Moufang part (which is a subloop) of a middle Bol loop
(Q, ·) extends to a right pseudo-automorphism of (Q, ·).

Keywords: loop, multiplication group, inner mapping,
middle Bol loop, pseudo-automorphism.

A grupoid (Q, ·) is called a quasigroup if the equations a ·x = b and
y · a = b have unique solutions, for ∀a, b ∈ Q. A loop is a quasigroup
with a neutral element. Two quasigroups (Q, ·) and (Q, ∗) are isotopic,
if there exist α, β, γ ∈ SQ, such that x∗y = γ−1(α(x) ·β(y)), ∀x, y ∈ Q.
If (Q,A) is a quasigroup and σ ∈ S3, then the operation σA, defined
by the equivalence σA(xσ(1), xσ(2)) = xσ(3) ⇔ A(x1, x2) = x3, is called
a σ-parastrophe of the operation A. The product of an isotopy and a
parastrophy, in any order, of a quasigroup (Q, ·) is called an isostrophy
of (Q, ·).

A loop (Q, ·) is called a middle Bol loop if it satisfies the identity:
x(yz\x) = (x/z)(y\x). It is proved in [4] that middle Bol loops are
isostrophes of left (resp. right) Bol loops. Namely, a loop (Q, ◦) is
middle Bol if and only if there exists a right (left) Bol loop (Q, ·), such
that, ∀x, y ∈ Q:

x ◦ y = y−1\x, (resp. x ◦ y = x/y−1). (1)

Let (Q, ·) be a loop. We consider the sets:

M
(·)

l = {a ∈ Q | a(y · az) = (ay · a)z,∀y, z ∈ Q},
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M
(·)

r = {a ∈ Q | (za · y)a = z(a · ya),∀y, z ∈ Q},

M (·) = {a ∈ Q | ay · za = a(yz · a),∀y, z ∈ Q}.

Lemma 1. [3] If (Q, ·) is a middle Bol loop, then M
(·)

l = M
(·)

r = M (·)

and form a subbloop in (Q, ·).

Definition. Let (Q, ·) be a middle Bol loop. The subbloop M (·) is
called the Moufang part of (Q, ·).

Let (Q, ·) be an arbitrary loop, ϕ ∈ SQ and c ∈ Q . Recall that:
a) ϕ is called a left (resp. right) pseudo-automorphism of (Q, ·), with
the companion c, if the equality

c · ϕ(x · y) = [c · ϕ(x)] · ϕ(y),

respectively,
ϕ(x · y) · c = ϕ(x) · [ϕ(y) · c],

holds, for every x, y ∈ Q.

Pseudo-automorphisms (left, right) have been introduced by Bruck
[1] and were studied by many authors (see, for example, [1-3,5] ). Bruck
proved in [1] that every inner mapping of a Moufang loop is a pseudo-
automorphism of this loop. Recall that a mapping α of the multipli-

cation group M(Q, ·) =< L
(·)

x , R
(·)

y |x, y ∈ Q > of a loop (Q, ·) is called
an inner mapping of (Q, ·) if α(e) = e, where e is the neutral element
of this loop.

Theorem 1. Let (Q, ·) be a middle Bol loop. Each inner mapping of
M (·) extends to a pseudo-automorphism of (Q, ·).

Proof. Let H =< L
(·)

x , R
(·)

y |x, y ∈ M (·) > be the multiplication

group of the subloop M (·), where L
(·)

x (z) = x · z and R
(·)

y (z) = z · y, for

all z ∈ Q. If a ∈ M (·), then L
(·)−1

a = L
(·)

a−1 and R
(·)−1

a = R
(·)

a−1 . Indeed,

if a ∈ M (·) then ay · za = a(yz · a), for every y, z ∈ Q. Now, taking
z = a−1 in the last equality, we get:

a · y = a · (ya−1 · a) ⇒ y = ya−1 · a =

= R
(·)

a R
(·)

a−1(y) ⇒ R
(·)−1

a (y) = R
(·)

a−1(y),
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∀y ∈ Q. As M (·) = M
(·)

l , for a ∈ M (·) the equality a(y · az) = (ay · a)z
holds, for every y, z ∈ Q. Taking y = a−1 in the last equality, we get:

a(a−1 · az) = a · z ⇒ a−1 · az = z ⇒ L
(·)

a−1L
(·)

a (z) = z,

∀z ∈ Q, so L
(·)

a−1 = L
(·)−1

a .
If U ∈ H, then U can be expressed in the form U = U1U2...Un,

where Ui = R
(·)

ai or Ui = L
(·)

ai , for some ai ∈ M (·). Let a ∈ M (·), then
ay · za = a(yz · a), for all y, z ∈ Q, so the triple

T1 = (L(·)

a , R(·)

a , L(·)

a R(·)

a )

is an autotopism of (Q, ·). For each a ∈ M (·) = M
(·)

r we have (za ·y)a =
z(a · ya), ∀y, z ∈ Q, so

(R(·)−1

a , L(·)

a R(·)

a , R(·)

a )

is an autotopism of (Q, ·) as well, hence the triple

T2 = (R(·)

a , R(·)−1

a L(·)−1

a , R(·)−1

a )

is an autotopism of (Q, ·). As T1 and T2 are autotopisms of (Q, ·) we
get that, for all Ui ∈ H there exists Vi,Wi ∈ H, such that

Ui(y) · Vi(z) = Wi(y · z),

∀y, z ∈ Q. So, letting V = V1V2...Vn and W = W1W2...Wn, we obtain:
W (y · z) = W1W2...Wn(y · z) = W1W2...Wn−1(Un(y) · Vn(z)) = ... =
U1U2...Un(y) · V1V2...Vn(z) = U(y) · V (z), for all y, z ∈ Q, so

U(y) · V (z) = W (y · z), (2)

for all y, z ∈ Q. Let U be a inner mapping of M (·), then U(e) = e,
where e is the unit of (Q, ·). Taking y = e in (2) we obtain V = W ,
so U(y) · V (z) = V (y · z), for all y, z ∈ Q. Taking z = e in the
last equality we have U(y) · V (e) = V (y), for all y ∈ Q. Denoting

V (e) = u, we obtain that V = R
(·)

u U , so the triple T = (U,R
(·)

u U,R
(·)

u U)
is an autotopism of (Q, ·), which implies that U is a right pseudo-
automorphism of the loop (Q, ·), with the companion u = V (e). ✷
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About model completeness in the

provability-intuitionistic logic and its extensions

Olga Izbash

Abstract

A. Kuznetsov proposed the provability-intuitionistic logic
which is an original extension of the propositional intuitionis-
tic logic. A numerable family of closed classes of formulas of the
provability-intuitionistic logic which are model pre-complete in
this logic and in its non tabular extensions is presented in this
paper.

Keywords: intuitionistic calculus, provability-intuitionistic
logic, pseudo-boolean algebras, model complete system.

Provability-intuitionistic logic formulas are defined usually on the
alphabet that consists of propositional variables p, q, r, . . ., eventually
with indices, symbols of operations

&,∨,⊃ ¬,∆ (1)

and parentheses. The provability-intuitionistic propositional calculus
I∆ [1] is defined by the axioms of intuitionistic calculus [2], three ∆ -
axioms

(p ⊃ ∆p), ((∆p ⊃ p) ⊃ p), ((p ⊃ q) ⊃ p) ⊃ (∆q ⊃ p)

and two inference rules: modus ponens and substitution rule.

We agree to define the logic I∆ as the set of deductible formulas in
the calculus I∆. In general, any set of formulas in the signature (1),
which contains the axioms of the calculus I∆ and is closed relative to

c©2017 by Olga Izbash
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the calculation rules for inference of this calculus, is called an extension
of the provability-intuitionistic logic.

As an algebraic interpretation of the calculus I∆ and its extensi-
ons served ∆ - pseudo-boolean algebras, i. e. systems of the type
< E; &,∨,⊃ ¬,∆ >, where < E; &,∨,⊃ ¬ > is a pseudo-boolean al-
gebra [3], and the relations x ≤ ∆x, ∆x ⊃ x = x, ∆x ≤ y ∨ (y ⊃ x)
take place. A formula is said to be valid on the algebra A if it is
identically equal to the unit 1 of this algebra. The set of all for-
mulas valid on the ∆-pseudo-boolean algebra A is an extension of
the provability-intuitionistic logic. We call this logic as the logic of
the algebra A, and denote it by LA. Let consider the logic of ∆-
pseudo-boolean algebra B =< {τ0, τ1, τ2, . . . , 1}; &,∨,⊃ ¬,∆ >, where
τ0 = 0 < τ1 < τ2 < · · · < 1. Let L be an non-tabular extension of logic
I∆, satisfying the condition I∆ ⊆ L ⊆ LB. The set of non-tabular ex-
tensions of the logic I∆, that satisfy this condition, is of the continuous
cardinal [4].

We say that a formula F is expressible in the logic L through the
system of formulas Σ, if F can be obtained from variables and formulas
of the system Σ by applying a finite number of times the weak rule of
substitution, which allows the passage from two formulas to the result
of substitution of one of them to other instead of all entries of some
one of variables, and equivalent replacement rule in the logic L, which
allows switching in L from one formula to a formula equivalent to her.

A formula F (p1, . . . , pn) of the logic L is called a model for boolean
function f(p1, . . . , pn), if the identity F (p1, . . . , pn) = f(p1, . . . , pn) is
true on the set {0; 1}. The system Σ of formulas of the logic L is said
to be model complete in L, if, for any boolean function, at least one
of its model is expressible in L by Σ. The system Σ is called model

pre-complete in L, if Σ is not model complete in L but for any formula
F , which is not expressible in L by Σ, the system Σ

⋃
{F} is model

complete in L. The idea of a model completeness research belongs to
A.V. Kuznetsov, a criterion for model completeness in general 3-valent
logic was obtained by Iu. N. Tolstova [5].

We say that a formula F (p1, . . . , pn) preserves on the algebra A
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the predicate R(x), if for any elements α1, . . . , αn of the algebra A

the proposition R(F [α1, . . . , αn]) is true each time when propositions
R(α1), . . . , R(αn) are true. It is obvious, that a class of formulas that
preserve on this algebra a predicate is closed relative to the expressi-
bility in the logic of this algebra. Let denote by Ki (i = 1, 2, . . .) the
class of formulas preserving the predicate (x = 0) ∨ (x = τi) on the
algebra B.

Let consider the following application f(p) of the algebra B into the
logic I∆:

f(0) = (p&¬p), . . . , f(τi) = δi(p&¬p), . . . , f(1) = (p ⊃ p)(i = 1, 2, . . .).

Lemma 1. For any elements α and β of the algebra B, the following

equivalences are deductible in I∆:

(f(α&β) ∼ (f(α)&f(β))), (2)

(f(α ∨ β) ∼ (f(α) ∨ f(β))), (3)

(f(α ⊃ β) ∼ (f(α) ⊃ f(β))), (4)

(f(∆α) ∼ ∆f(α)), (5)

(f(¬α) ∼ ¬f(α)). (6)

Using deductions (2) - (6), it is demonstrated by induction that for
the arbitrary formula A(p1, . . . , pn) and for any elements α1, . . . , αn of
the algebra B the following statement is correct

⊢ (f(A[α1, . . . , αn]) ∼ A[p1/f(α1), . . . , pn/f(αn)]).

Lemma 2. Let f be the above-defined application of algebra B in

the logic I∆. Then for any element τi ∈ B(i = 1, 2, ...) the formulas

f(0) and f(τi) belong to the class Ki.
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Using these lemmas, is demonstrated the following theorem:

Theorem 1.Let L be a non-tabular logic which satisfies the conditions

I∆ ⊆ L ⊆ LB. Classes K1,K2, . . . are distinct two by two relative to

inclusion and they are model pre-complete in L.

Theorem 2.Let L be a non-tabular logic which satisfies the conditions

I∆ ⊆ L ⊆ LB. For logic L does not exist a criterion of model com-

pleteness traditionally formulated in terms of a finite number of model

pre-complete classes.
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On the orthogonal groupoids 

Vladimir Izbash 

Abstract 

The subject of this note is to investigate the question when the 

groupoid has an orthogonal complement and how many 

complements they are. If Q n  , then a finite groupoid ( )Q   

has exactly ( )nn  orthogonal complements.

Keywords: orthogonal groupoids, quasigroup, 

The concept of orthogonality is introduced by the L. Euler in [1] for 

Latin squares (also called Greco-Latin squares). The extension of the 

notion of orthogonality from latin squares to arbitrary groupoid tables has 

been discussed by several authors, for exampl, A. Sade [3], S. K. Stein 

[2], V. Belousov [4].  

A groupoid is a pair ( )Q , where Q  is a set and " "  a binary 

operation on Q  (a function from Q Q  to Q ). A groupoid ( )Q  is a 

quasigroup if an only if its Cayley table is a latin square. The number Q   

is called the order of the corresponding latin square. 

Definition 1. Two groupoids ( ) ( )Q Q    are said to be orthogonal if, 

for any a b G   the system of equations 

(1)
x y a

x y b

 


 
 

has a unique solution in Q . 

This Definition is equivalent to the fact that the mapping 

( ) ( )x y x y x y     is a permutation of Q Q . In this case the 

groupoid ( )Q  is called an orthogonal complement for ( )Q . 
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Orthogonality is a symmetric property. It is rather easy to construct a 

pair ( ) ( )Q Q    of orthogonal groupoids on the set Q . We start from an 

arbitrary permutation   of Q Q  and, for any x y Q  , put 

x y u x y v      if and only if ( ) ( )x y u v    . So, there are 

2(| | )!Q  pair of orthogonal groupoids defined on the set Q . 

Proposition 1. If a groupoid ( )Q  has an orthogonal complement than 

Q Q Q  , where { }Q Q a b a b Q      . 

Proof. Suppose the groupoid ( )Q  has an orthogonal complement 

( )Q , but Q Q Q  . Than there exists a Q , such that a Q Q  . So 

x y a  , for any x y Q  . Therefore, for any groupoid ( )Q  and any 

element b Q , the system (1)  has no solutions in Q . This means that 

the groupoid ( )Q  is not orthogonal to any groupoid ( )Q .  

The condition Q Q Q   is not sufficient for the existence of  an 

orthogonal complement for the groupoid ( )Q  .  

For a Q  we denote 
2( ) {( ) }S a x y Q x y a         

Proposition 2. i) For all a b Q  , ( ) ( )S a S b a b    
(ii) ( )

a Q

S a Q Q


   .

Theorem 1. i) A finite groupoid ( )Q  has an orthogonal complement if 

and only if ( )S a Q    , for all a Q ;  

ii) If Q n  , and ( )S a Q    , for all a Q , then it has exactly

( )nn  orthogonal complements.

Proof. i) Let Q n   and let ( )Q   has an orthogonal complement 

( )Q , but there exists a Q , such that ( )S a Q     . We can find 

a Q , such that ( )S a Q     . Than there exist 1n   diferent pairs 

1 1 2 2( ) ( )x y x y …     2

1 1( )n nx y Q   , with i ix y a  , for 

{1 2 1}i … n     . Since { {1 2 1}}i ix y i … n n Q           , there 

exist at least two diferent pairs ( ) ( ) 1 1k k j jx y x y j k n        , such 
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that j j k kx y x y a     and j j k kx y x y b    , for some b Q .

Therefore, the system (1)  has two solutions, i.e. ( )Q   is not orthogonal 

to ( )Q . So ( )S a Q     , for all a Q .  

Conversely, suppose ( )S a Q    , for all a Q , and let  

QaSa ),(:  be an arbitrary one-to-one mapping. Obviously, 

a b   if and only if a b , since ( ) ( )S a S b    . It is clear that 

( ) ( )x y S x y    , and x y w z    if and only if x y w z   . Using the 

system { }a a Q   we define the groupoid ( )Q  as follows: for 

x y Q  , we put ( )x yx y x y    . We have Q Q Q   since 

( )S x y Q      and QyxSyx  ),(:  is a one-to-one mapping. 

Groupoids ( )Q  and ( )Q  are orthogonal. Indeed, let us fix any 

a b Q  . Since Q Q Q   there are x y Q   such as x y a  . 

Analogously, since QyxSyx  ),(:  is a one-to-one mapping, there 

are unique ( ) ( )x y S x y     , such that ( )x y x y b 
   . Obviously, 

x y x y    , ( ) ( )x y x yx y x y    
       and ( )x y   is a unique solution 

of the system  

,

.

u v a

u v b

 


 

Therefore, groupoids ( )Q  and ( )Q  are orthogonal. 

ii) Let Q n   and ( )S a Q    , for all a Q . Let

}|),(:{ QtQtSt   and }|),(:'{ QtQtSt   be two sets of 

one-to-one mappings. Define ( )x yx y x y     and ( )x yx y x y    , 

for all x y Q  . Fix any a Q . If aa   , then there exists 

( ) ( )c d S a   , such that ( ) ( )aa c d c d    . So x y x y    and the

groupoids ( )Q  and ( )Q   are different. Therefore, we have at least 

( )nn  different orthogonal complements of the groupoid ( )Q , since

93



Vladimir Izbash 

there are ( )nn different sets of one-to-one mappings 

}|),(:{ QtQtSt  . 

Will show that any orthogonal complement ( )Q  of a groupoid 

( )Q  is obtained in the manner described above. Indeed, since ( )Q  and 

( )Q  are orthogonal, the system (1)  has a unique solution for any pair 

a b Q  . From i) we have ( )S a Q    , for all a Q . For any a Q  

define ),(:  aSQa , namely, for every b Q  let us put 

( ) ( )a a b a bb x y     if and only if 

,

.

a b a b

a b a b

x y a

x y b

 

 

 


 

The map a  is a bijection, and a c   if and only if a c , since 

( )Q  and ( )Q  are orthogonal. Now is easy to see that for 

1{ }a a a Q     we have ( )x yx y x y    , for all x y Q  . Indeed, 

1( , ) ( , ) ( ) ( )x y x y x yx y b x y b b x y

         

),( yxyxbyx yx  . 
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On the left coquotient with respect to meet for

pretorsions in modules

Ion Jardan

Abstract

In [2] the operation of left coquotient with respect to meet

for preradicals of R-Mod is defined. In the present short notice
the particular case of pretorsions of R-Mod is considered. We
prove that for pretorsions the studied operation coincides with
the operation (called right residual) introduced and investigated
by J.S.Golan ([1]) in the terms of preradical filters of R. For that
it is necessary to show the concordance of the studied operation
with the transition r  Er from pretorsions of R-Mod to the
preradical filters of the ring R.

Keywords: module, pretorsion, filter, left coquotient.

Let R be a ring with unity and R -Mod be the category of unitary
left R -modules. By definition a pretorsion is a hereditary preradical.
We denote by PT the set of all pretorsions of the category R -Mod.
It is well known the description of pretorsions by preradical filters.

Definition. The set of left ideals E ⊆ L(RR) is called preradical filter
(left linear topology) if it satisfies the following conditions:

(a1) If I ∈ E and a ∈ R, then (I : a) = {x ∈ R | xa ∈ I} ∈ E;

(a2) If I ∈ E and I ⊆ J , J ∈ L(RR), then J ∈ E;

(a3) If I, J ∈ E, then I ∩ J ∈ E.

There exists a monotone bijection between the pretorsions of
R -Mod and preradical filters of L(RR) defined by the mappings:

r  Er, Er = {I ∈ L(RR) | r(R/I) = R/I};

E r
E
, r

E
(M) = {m ∈ M | (0 : m) ∈ E} ([3],[4]).
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We denote by PF the set of all preradical filters of the lattice L(RR)
of left ideals of R. The sets PT and PF can be considered as complete
lattices and the mappings indicated above determine an isomorphism
of these lattices: PT ∼= PF .

We mention that in the lattice PT the product of two pretorsions
r · s coincides with their meet r ∧ s .

In PT (∧,∨) we also have the operation r # s defined by the rule
[(r# s) (M)]/s (M) = r (M/s (M) ), M ∈ R-Mod and r # s is called
the coproduct of pretorsions r and s .

In a similar way is introduced in PF the notion of coproduct:
Er #Es={I∈ L(RR) | ∃H∈Er, I ⊆ H such that (I : a) ∈ Es,∀a∈H}.

So we have the isomorphic lattices PT (∧,∨,#) and PF (
∧
,
∨
,#)

with the following properties:
E ∧

α∈A
rα =

∧

α∈A

Erα ; E ∨

α∈A
rα =

∨

α∈A

Erα .

Now we remind some notions and results of the monograph [1],
where the pretorsions of R -Mod are investigated by the point of view
of the associated preradical filters. In [1] PF is denoted by R − fil

and the operation of multiplication in R− fil is defined by the rule:
KK

′

={I∈ L(RR) | ∃H∈K
′

, such that I ⊆ H and (I : a)∈K,∀a∈H},

where K,K
′

∈ R− fil.

It is easy to see that in our notations for every r, s ∈ PT we have
EsEr = Er #Es. All properties of the operation of multiplication easily
can be translated in the language of coproduct, in particular associati-
vity and distributivity:

E1 #(E2 #E3) = (E1 #E2)#E3; (
∧

α∈A

Erα)#E =
∧

α∈A

(Erα #E).

Using the product KK
′

of preradical filters, in [1] is defined right

residual K ′−1K of K by K ′ as the unique minimal preradical filter
K ′′ in R− fil satisfing K ′K ′′ ⊇ K. By the distributivity such a filter
always exists and is equal to

⋂
{K ′′ |K ′K ′′ ⊇ K}. In the book [1] a

series of properties of this operation is exposed.

Translating in our notations and making the necessary changes
(multiplication versus coproduct) we obtain the following statements.

Let E1, E2 ∈ PF. Left coquotient with respect to meet of E1 by
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E2 is called the minimal preradical filter E such that E#E2 ⊇ E1 or∧
{E ∈ PF |E#E2 ⊇ E1}. The distributivity ensures the existence of

this coquotient, denoted by E1
∧/# E2 ([2]).

Now we will show that this preradical filter coincides with the pre-
radical filter of the pretorsion rE1

∧/# rE2 .

Lemma. If r, s ∈ PT, then Er# s = Er #Es.

Proof. Firstly we specify the expresions of pretorsions determined by
indicated preradical filters, using that r(M) = {m ∈ M | (0 : m) ∈ Er}

for every r ∈ PT and M ∈ R -Mod.

The preradical filter Er# s is determined by the pretorsion r # s

and (r # s)(M) = {m ∈ M | (m + s(M)) ∈ r(M/s(M))}. But
r(M/s(M)) = {x + s(M) |x ∈ M and (0 : (x + s(M))) ∈ Er} =
= {x + s(M) |x ∈ M and (s(M) : x) ∈ Er}, so we have (r # s)(M) =
= {m ∈ M | (s(M) : m) ∈ Er}.

We denote by t the pretorsion of R -Mod defined by Er #Es, so for
every M ∈ R -Mod we have t(M) = {m ∈ M | (0 : m) ∈ Er #Es} =
= {m∈M | ∃H∈Er, (0 : m) ⊆ H such that ((0 : m) : a)∈Es,∀a∈H}=
= {m ∈ M | ∃H ∈ Er, (0 : m) ⊆ H such that (0 : am) ∈ Es, ∀a ∈ H}.

Now we verify the equality of lemma.

(⊆) It is sufficient to show that r# s ≤ t. For every M ∈ R -Mod
if m ∈ (r # s)(M), then H = (s(M) : m) ∈ Er and (0 : m) ⊆

⊆ (s(M) : m) = H. So if a ∈ H, then am ∈ s(M), i.e. (0 : am) ∈ Es,
which means that m ∈ t(M). Therefore (r # s)(M) ⊆ t(M) for every
M ∈ R -Mod, i.e. r# s ≤ t, which implies Er# s ⊆ Er #Es.

(⊇) We verify that t ≤ r # s. Let M ∈ R -Mod and m ∈ t(M). Then
there exists H ∈ Er such that (0 : m) ⊆ H and (0 : am) ∈ Es,∀a ∈ H.
If a ∈ H, then (0 : am) ∈ Es, so am ∈ s(M), i.e. a ∈ (s(M) : m),
therefore H ⊆ (s(M) : m). From the definition of preradical filter
(condition (a2)) since H ∈ Er now we have (s(M) : m) ∈ Er, which
means that m ∈ (r # s)(M). This proves that t(M) ⊆ (r # s)(M) for
every M ∈ R -Mod, therefore t ≤ r # s and so Er #Es ⊆ Er# s. �

Proposition. For every pretorsions r, s ∈ PT we have:

Er ∧/
#
s = Er

∧/# Es.

Proof. (⊇) By definition Er
∧/# Es =

∧
{E ∈ PF |E#Es ⊇ Er} , i.e.
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it is the least preradical filter with the property E#Es ⊇ Er. From
the Lemma Er ∧/# s#Es = E(r ∧/# s)# s and since (r ∧/

#
s)# s ≥ r ([2])

we have E(r ∧/# s)# s ⊇ Er, so Er ∧/# s#Es ⊇ Er. Therefore Er ∧/# s is one

of preradical filter E and so Er ∧/# s ⊇
∧
{E ∈ PF |E#Es ⊇ Er}, i.e.

Er ∧/
#
s ⊇ Er

∧/# Es.
(⊆) Let Et be preradical filter defined by pretorsion t with the pro-
perty Et#Es ⊇ Er. From the Lemma Et# s ⊇ Er, therefore t# s ≥ r.
Since r ∧/# s is the least pretorsion h with the property h# s ≥ r

([2]) it follows that r ∧/# s ≤ t i.e. Er ∧/# s ⊆ Et. So Er ∧/# s is the least
between preradical filters E with the property E#Es ⊇ Er. �

As a conclusion we can affirm that all results of J.S.Golan [1] about
the operation of right residual of preradical filters can be treated as a
particular case of the operation of left coquotient with respect to meet,
defined in [2] in general case of preradicals of M ∈ R -Mod.
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On some new characterizations of pretorsions

of a module category

Alexei Kashu

Abstract

Three new methods of descriptions of pretorsions in modules
are shown. Pretorsions are characterized by closure operators in
L(RR), by closure operators of R-Mod and by functions which
distinguish the dense submodules.

Keywords: category, module, pretorsion, closure operator.

The pretorsion r of a module category R-Mod is a preradical with
the property: r(M)∩ N = r(N) for every submodule N ⊆ M . Pretor-
sions of R-Mod can be described by the classes of modules and by the
filters of left ideals of R [1-3]. The aim of this communication is to show
some new characterizations of pretorsions by the closure operators of
special types.

Every pretorsion of R-Mod defines the class of modules Tr = {M ∈

R-Mod | r(M) = M} and the set of left ideals of R:

Er = {I ∈ L(RR) | r(R/I) = R/I}.

Moreover, Tr and Er reestablish the pretorsion r.
In the set of pretorsions PT of R-Mod three operations are consi-

dered: meet (∧), join (∨) and coproduct (#) and their expressions by
the classes Tr and the filters Er are indicated.

Proposition 1. For the pretorsions of R-Mod the following relati-

ons are true:

1) T∧

α∈A

rα =
∧

α∈A

Trα , T∨

α∈A

rα =
∨

α∈A

Trα , Tr#s = Tr # Ts;

2) E∧

α∈A

rα =
∧

α∈A

Erα , E∨

α∈A

rα =
∨

α∈A

Erα , Er#s = Er # Es.
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In the lattice of left ideals L(RR) of R the modular preclosure ope-

rators are defined by the conditions of extension, monotony, modularity
and linearity.

Proposition 2. There exists a monotone bijection between the

pretorsions of R-Mod and the modular preclosure operators of L(RR).

The other form of characterization of pretorsions is obtained by the
closure operators of the category R-Mod ([4]).

Proposition 3. There exists a monotone bijection between the

pretorsions of R-Mod and the maximal and hereditary closure operators

of R-Mod.

The description of pretorsions by the dense submodules (with re-
spect to some closure operator of R-Mod) also is obtained.

Proposition 4. There exists a monotone bijection between the

pretorsions of R-Mod and the abstract functions of type FFF1 (see [4]),
which are maximal and hereditary.

Some approximations of pretorsions by jansian pretorsions and by
torsions are constructed.
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1983 (in Russian).

[4] A.I. Kashu. Closure operators in the categories of modules. Part I.
Algebra and Discrete Mathematics, v. 15 (2013), �2, pp. 213–228.

Alexei Kashu

Institute of Mathematics and Computer Science, Republic of Moldova

Email: alexei.kashu@math.md

100



Proceedings of the 4th Conference of Mathematical Society of Moldova

CMSM4’2017, June 28-July 2, 2017, Chisinau, Republic of Moldova

On parastrophes of quasigroup identities and

corresponding varieties and trusses

Halyna V. Krainichuk

Abstract

V.D. Belousov [1] classified minimal nontrivial quasigroup
identities up to parastrophically primary equivalency [2] and
obtained seven identities. Here, the kinds of trusses of the cor-
responding trusses of varieties are defined. Identities for each of
the varieties are found. Identities defining semi-symmetric trus-
ses are described. The existence of these classes was considered
a problem [5].

Keywords: quasigroup, loop, parastrophe, identity, variety,
truss.

1 Introduction

Recall [3] that the σ-parastrophe of a class A of quasigroups is called
the class of all σ-parastrophes of quasigroups from A and is denoted
by σA. The set of all parastrophes of a class A is called a truss of A
and is denoted by tr(A). Since |tr(A)| divides |S3| (S3 is the group of
all permutations of {1, 2, 3}) then there are four possibilities: |tr(A)| ∈
{1, 2, 3, 6}.

Let Ps(A) denote the set of all σ such that σA = A. Ps(A) is a
subgroup of S3 and is called the symmetry group of A. A truss tr(A)
is said to be:
– totally symmetric, if it has one element: tr(A) = {A}, i.e., all para-
strophes of A coincide, therefore Ps(A) = S3;
– semi-symmetric, if it has two elements: tr(A) = {A, (12)A}, i.e.,

c©2017 by Halyna V. Krainichuk
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Ps(A) = Ps((12)A) = A3;
– middle symmetric, if it has three elements tr(A) = {A, (13)A, (23)A},
i.e., their symmetry groups are {ι, (12)}, {ι, (13)}, {ι, (23)};
– asymmetric, if it has six elements, i.e., all parastrophes are pairwise
different, in other words, their symmetry group is identical, that is {ι}.

Let id be an identity. An identity obtained from id by replacing
the main operation with its σ−1-parastrophe is called σ-parastrophe
of id and is denoted by σid. A σ-parastrophic identity defines a σ-
parastrophic variety.

2 Main results

V.D. Belousov [1] described minimal nontrivial quasigroup identities up
to parastrophiccally primary equivalency [2] and obtained the following
seven identities: Belousov I: x(x·xy) = y; Belousov II: y(x·xy) = x;,
Stein I: x · xy = yx; Stein II: xy · x = y · xy; Stein III: yx · xy = x;
Shröder I: xy · y = x · xy; Shröder II: xy · yx = y.

The following question is natural: what kind of trusses do they
define?

Table 1. Middle symmetric varieties with Ps = {ι, (23)}

Parastrophes A = rA sA = srA ℓA = sℓA

Belousov I x(x·xy) = y (yx · x)x = y x(yx/y) = yx
(x\yx)y = yx

Table 2. Middle symmetric varieties with Ps = {ι, (12)}

Parastrophes A = sA ℓA = srA rA = sℓA

Stein II xy·x = y·xy y(x · yx) = x (xy · x)y = x

Stein III yx · xy = x (xy·x)xy = y, xy(y · xy) = x
y(xy · x) = x (x · yx)y = x

102



On parastrophes of identities, varieties and trusses

Table 3. Asymmetric varieties

Parastrophes of Belousov’s law II

A y(x · xy) = x, xy(xy · x) = y
sA (yx · x)y = x, (x · yx)yx = y
ℓA x(yx · y) = yx, y(xy · x) = xy
rA x(xy · x) = y, x(x · yx) = y, (x · xy)x = y
sℓA (xy · x)x = y, x(yx · x) = y, (x · yx)x = y
srA (x · yx)y = yx, (y · xy)x = xy

Parastrophes of Stein’s law I

A x · xy = yx
sA yx · x = xy
ℓA x(y · yx) = yx
rA (x · xy)y = x, xy(xy · y) = x
sℓA (x · xy)xy = y, y(yx · x) = x
srA (xy · y)x = xy

Theorem 1.The identities
– Shröder I and Shröder II define totally symmetric trusses;
– Stein II, Stein III and Belousov I define middle symmetric trusses;
– Stein I and Belousov II define asymmetric trusses.

Corollary 1.The identities of the Belousov’s law II and xy ·(xy ·x) = y
are equivalent and define asymmetric variety of quasigroups.

Table 4. Semi-symmetric varieties

Parastrophes of the varieties A = srA = sℓA sA = rA = ℓA

of quasigroups x2 · x = x x · x2 = x

x(yz · zx) = y, (xy · yz)x = z,
of group isotopes (xy · z)zx = y, xy(y · zx) = z,

x(y ·zx)·z = y, x·(yx·z)y = z.

In the Tables 1-3, the identities in one definite sell are equivalent;
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the identities in different sells are parastrophic. In Table 4, the ans-
wer to F. Sokhatsky’s problem [4] is given. These varieties are not
subvarieties of the variety of totally symmetric quasigroups.

Acknowledgments. I thank my Supervisor F.M. Sokhatsky for
help in ordering and systematization of ideas in quasigroup theory.
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Infinite sharply 2-transitive permutation groups

Eugene Kuznetsov

Abstract

Sharply 2-transitive permutation groups are studied in this
work. The notions of transversal in a group [3] and Sabinin’s
semidirect product [5] are used. All elements of order 2 from a
sharply 2-transitive permutation group G form a loop transver-
sal T in G to H0 = St0(G). For an arbitrary element ti ∈ T
(ti 6= id) its centralizer Ci = CG(ti) is a group transversal in G
to H0 = St0(G). The group G may be represented as a semi-
direct product: G = T ⋋ H0 = Ci ⋋ H0. A construction of the
group G as an external semidirect product of two suitable groups
is described. It gives us a potential example of an infinite shar-
ply 2-transitive permutation group G with a non-abelian normal
subgroup T , which consists of fixed-point-free permutations and
the identity permutation.

Keywords: permutation group, loop, transversal, semidirect
product, centralizer.

1 Introduction

Finite sharply 2-transitive permutation groups were described by Zas-
senhaus [6]. He proved that a sharply 2-transitive permutation group
G on a finite set of symbols E is a group G∗ of linear transformations
of some near-field < E,+, · >:

G∗ = {αa,b | αa,b(t) = a · t+ b, a 6= 0, a, b, t ∈ E}.

In the case when the set E is infinite, the problem of classification
of sharply 2-transitive permutation groups on E is open.

c©2017 by Eugene Kuznetsov

105



Eugene Kuznetsov

2 Preliminary lemmas and a partition on cases

Let G be a sharply 2-transitive permutation group on some set E.

Lemma 1. [1] All elements of order 2 from G are in one and the same

class of conjugate elements.

Since G is a sharply 2-transitive permutation group, then only the
identity permutation id fixes more than one symbol from E. So we
obtain the following two cases:

1) Every element of order 2 from G is a fixed-point-free permutation
on E.

2) Every element of order 2 from G has exactly one fixed point from
E.

Lemma 2. [1] Let α and β be distinct elements of order 2 from G.

Then the permutation γ = αβ is a fixed-point-free permutation on E.

Let 0 and 1 be some distinguished distinct elements from E. Denote
H0 = St0(G).

3 A loop transversal in the group G and its

properties

Theorem 1. [2] In the case 1) there exists a left loop transversal T in

G to H0, which consists of id and elements of order 2.

Theorem 2. [2] In the case 2) there exists a left non-reduced general

type quasigroup transversal T in G to H0, which consists of elements

of order 2.

Theorem 3. [2] The transversal T is a normal subset in the group G.
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4 Centralizers of the elements of a loop trans-

versal T and its properties

For an arbitrary (fixed) element ti ∈ T let us consider its centralizer
Ci = CG(ti):

Ci = CG(ti) = {g ∈ G | gti = tig}.

Theorem 4. [4] The following statements are true:

1. For any i ∈ E − {1} the set Ci is a left transversal in G to H0,

2. For any i ∈ E −{1} the left transversal Ci is a group transversal

in G to H0,

3. For any i, j ∈ E − {1} transversal operations < Ci, · > and <
Cj , · > are isomorphic.

Theorem 5. [4] For any i, j ∈ E − {1} sets Ci and Cj are conjugated

in G by elements from the group H0.

5 The group G as a semidirect product of a

transversal and a subgroup H0

5.1 Representation of the group G

Theorem 6. The group G is a semidirect product of a loop transversal

T and H0.

Theorem 7. For any i ∈ E −{1} the group G is a semidirect product

of subgroups Ci and H0.

5.2 Construction of the group G as an external semidi-

rect product of two suitable groups

Theorem 8. Let T = 〈E, •, 1〉 be a group and H = Inn(T ) be the

group of all inner automorphisms of T . Then there exists a transitive

permutation group G, which is a semidirect product G = T ⋋H.
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Theorem 9. If in the previous proposition T is an infinite non-abelian

simple group, then:

1. G is an infinite sharply 2-transitive permutation group;

2. Fixed-point-free permutations of the group G with the identity

permutation id form a normal subgroup T0, which is isomorphic

to the (non-abelian) group T .
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Morita equivalence of semigroups revisited

Valdis Laan, László Márki, Ülo Reimaa

Abstract

Firm semigroups and firm acts are defined as non-additive
analogues of firm rings and firm modules. Using the categories
of firm acts Morita theory is developed for firm semigroups. The
main result states that the categories of firm right acts over two
firm semigroups are equivalent if and only if these semigroups are
strongly Morita equivalent, which means that they are contained
in a unitary Morita context with bijective mappings.

Other categories of acts which have been used earlier to de-
velop Morita equivalence are also investigated. Over firm semi-
groups all the considered categories turn out to be equivalent to
the category of firm acts.

Keywords: Firm semigroup, firm act, Morita equivalence,
strong Morita equivalence, adjoint functors.

1 Introduction

A theory of Morita equivalence was carried over from unital rings to
monoids independently by Banaschewski and Knauer in the early se-
venties but their results have not really been taken up. In the eighties,
Morita equivalence was extended to much wider classes of rings, no
longer requiring the existence of an identity element. To construct a
useful theory of Morita equivalence in the non-unital case, one had to
restrict both the class of rings and the class of modules to be consi-
dered. Talwar [9] found a viable approach to Morita equivalence for
semigroups without identity but with certain idempotents called local
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units, showing also the relevance of Morita equivalence in the structure
theory of semigroups. He also extended some results to factorisable
semigroups (those in which every element decomposes as a product).
Subsequently, Chen and Shum as well as Neklyudova contributed to
the theory.

A decisive step was made by Lawson [5] in 2011. He considered the
class of semigroups with local units, defined in the same way as by Tal-
war. However, instead of Talwar’s fixed acts he considered closed acts –
these are easier to get around with than fixed acts, and Lawson proved
that these two kinds of acts coincide over semigroups with local units.
The main result in Lawson’s work is the fact that, for semigroups with
local units, every Morita equivalence is strong in the sense that it comes
from a unitary Morita context with surjective mappings. Lawson [5]
as well as Laan and Márki [4] give various structural characterisations
of Morita equivalence for semigroups with local units. By all this one
can say that we have a satisfactory theory of Morita equivalence for
semigroups with local units. Attempts to extend the theory beyond
semigroups with local units have not brought decisive results so far
concerning the problem whether every Morita equivalence is strong.

Here we consider the same class of acts as was done in [5] and [4].
There they were called ‘closed acts’ – here we call them ‘firm acts’.
Namely, these acts are exactly the non-additive analogues of modules
called ‘firm modules’ by Quillen [7], used later also in many papers
by Maŕın. We call a semigroup ‘firm’ if it is a firm act over itself.
The main result of our paper is that two firm semigroups are strongly
Morita equivalent if and only if the categories of firm right acts over
these semigroups are equivalent. We also consider other categories
of acts used for building Morita theory by other authors, as well as
categories of acts which correspond to categories of modules used by
Garćıa and Maŕın [2], with the aim of clarifying the relations between
these categories. Our main tool is the usage of adjunctions between
various categories of acts. In our eyes, the results in the present paper
are convincing enough to claim that firm semigroups and firm acts are
the natural environment to study Morita equivalence of acts.
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2 Preliminary notions

A semigroup S is called factorisable if every element of S is a product
of two elements. We say that an element s of a semigroup has a weak

right local unit u (weak left local unit v) if su = s (vs = s). A
semigroup S has weak local units if each of its elements has both a
weak right and a weak left local unit, local units if the elements u, v
above can always be chosen to be idempotent, and common weak

local units if for every s, t ∈ S there exist u, v ∈ S such that s = su =
vs, t = tu = vt.

Let S and T be semigroups. We use the notation ActS (SAct,

SActT ) for the category of all right S-acts (left S-acts, (S, T )-biacts)
where morphisms are right S-act homomorphisms (left S-act homo-
morphisms, (S, T )-biact homomorphisms). A right S-act AS is called
unitary if AS = A. We denote the category of all unitary right S-acts
by UActS.

We say that a right S-act AS is firm if the mapping

µA : A⊗ S → A, a⊗ s 7→ as

is bijective. A semigroup S is called firm if it is firm as a right (or,
equivalently, left) S-act. The category of all firm right S-acts is denoted
by FActS .

Obviously, AS is unitary if and only if the mapping µA is surjective.
Hence, for any semigroup S, FActS is a subcategory of UActS. Also, a
semigroup S is factorisable if and only if µS is surjective.

A right S-act AS is called nonsingular if a = a′ (a, a′ ∈ A) whene-
ver as = a′s for all s ∈ S. Denote the category of unitary nonsingular
right S-acts by NActS . This category is used for developing Morita
theory by Chen and Shum [1].

What we know is that FActS = NActS if S is a semigroup with
common weak local units. However, even for semigroups with local
units, these categories need not coincide.
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3 Categories of acts over firm semigroups

We show that the different settings in which Morita equivalence of semi-
groups is considered in earlier papers amount to the same equivalence
for firm semigroups.

Proposition 1. Let S and T be semigroups and let SPT ∈ SActT .

Then the functor − ⊗ P : ActS → ActT is left adjoint to the functor

ActT (P,−) : ActT → ActS.

Proposition 2. Let S be a firm semigroup. Then A⊗S is a firm right

S-act for any right S-act AS and −⊗ S is a functor ActS → FActS.

It is easy to check that µ : −⊗S → 1ActS is a natural transformation.
In the case of modules, a category denoted by CMod-R (see, for

example, [2]) has been used in investigations of Morita equivalence
mainly in the works of Maŕın. Its act counterpart would be the full
subcategory of ActS given by the acts AS for which the natural map
λA : A → ActS(S,A) which corresponds to µA : A ⊗ S → A under
the adjunction − ⊗ S ⊣ ActS(S,−) is invertible. We will denote this
category by CActS.

Next, if S is a factorisable semigroup and AS is a right S-act, then
AS = {as | a ∈ A, s ∈ S} is the largest unitary subact of AS . This
construction is functorial.

There is a remarkably strong result in [6] which says that, for an
idempotent ring (the counterpart of a factorisable semigroup in ring
theory), the category of firm modules is equivalent to the category
Mod-R whose objects are modules MR such that MR = M and, for all
m ∈ M , if mR = 0 then m = 0 (the counterpart of NActS), and also
to the category CMod-R. In the semigroup case we have:

Theorem 3. For a firm semigroup S, the categories FActS, NActS and

CActS are equivalent.

We can combine the information about firm acts to obtain the fol-
lowing result.
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Theorem 4. Let S be a firm semigroup and AS a unitary right S-act.
Then the following assertions are equivalent.

1. AS is firm.

2. There exists an isomorphism A⊗ S → A of right S-acts.

3. εA is invertible.

4. ε′
A
is invertible.

Here εA and ε′
A
are the counits of certain adjunctions.

4 Morita contexts and the main result.

In [5] Lawson showed that, for a semigroup S with local units, the
category SFAct coincides with the category consisting of left S-acts

SA for which the canonical mapping S ⊗ SAct(S,A) → A is bijective.
Acts fixed by ε over semigroups with local units were introduced by
Talwar in [9]. In a subsequent paper [10], he used acts fixed by the
map ε′ above to develop Morita theory for factorisable semigroups. So
Theorem 4 yields immediately the following generalisation of Lawson’s
result to firm semigroups.

Corollary 5. Over a firm semigroup, firm acts are the same as fixed

acts in the sense of Talwar [9] and [10].

Next we have an analogue of the Eilenberg-Watts theorem, sta-
ting that equivalence functors between categories of firm acts over firm
semigroups are naturally isomorphic to tensor multiplication functors.

Theorem 6. Let S and T be firm semigroups and let F : FActS →

FActT and G : FActS → FActT be mutually inverse equivalence functors.
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Then

F ∼= −⊗ F (S),

G ∼= −⊗G(T ).

Moreover, the left acts SF (S) and TG(T ) are firm.

Finally, we have that right Morita equivalence and strong Morita
equivalence coincide on the class of firm semigroups.

A Morita context is a six-tuple (S, T, SPT , TQS , θ, φ), where S
and T are semigroups, SPT ∈ SActT and TQS ∈ TActS are biacts, and

θ : S(P ⊗Q)S → SSS , φ : T (Q⊗ P )T → TTT

are biact morphisms such that, for every p, p′ ∈ P and q, q′ ∈ Q,

θ(p⊗ q)p′ = pφ(q ⊗ p′), qθ(p⊗ q′) = φ(q ⊗ p)q′.

We say that a Morita context (S, T, SPT , TQS , θ, φ) is

• unitary, if SPT and TQS are unitary biacts,

• surjective, if θ and φ are surjective,

• bijective, if θ and φ are bijective.

Semigroups S and T are called strongly Morita equivalent if
they are contained in a unitary surjective Morita context.

While it is clear what is meant by strong Morita equivalence, it is
not so obvious what right Morita equivalence should mean. In different
articles, various categories have been used to define Morita equivalence.
In the present text we have shown that, at least for firm semigroups,
it does not make any difference which of these categories one uses. For
us, the category of firm acts seems to be the most natural choice.

We say that semigroups S and T are right Morita equivalent if
the categories FActS and FActT are equivalent.
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One of the central questions in Morita theory is: when right Morita
equivalence and strong Morita equivalence coincide. By [5], they coin-
cide on the class of semigroups with local units. Our main result is a
far-reaching generalisation of Lawson’s theorem. It is the non-additive
counterpart of a theorem announced by Quillen [8] in 1996 and redisco-
vered by Garćıa and Maŕın in [2], stating that any Morita equivalence
between firm rings is given by a unique Morita context.

Theorem 7. Let S and T be firm semigroups. The following assertions

are equivalent.

1. The categories FActS and FActT are equivalent.

2. The categories SFAct and TFAct are equivalent.

3. There exists a unitary bijective Morita context containing S
and T .

4. There exists a unitary surjective Morita context containing S
and T .

5. There exists a surjective Morita context containing S and T .
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[6] L. Maŕın. Morita equivalence based on contexts for various catego-

ries of modules over associative rings, J. Pure Appl. Algebra 133
(1998), pp. 219–232.

[7] D. Quillen. Module theory over nonunital rings, notes, 1996.
Available at http://www.claymath.org/library/Quillen/Working
papers/quillen%201996/1996-2.pdf.

[8] D. Quillen. Morita equivalence for non-unital rings, unpublished
notes from a lecture at the University of Exeter, 8.2.1996.

[9] S. Talwar. Morita equivalence for semigroups, J. Austral. Math.
Soc. (Series A) 59 (1995), pp. 81–111.

[10] S. Talwar. Strong Morita equivalence and a generalisation of the

Rees theorem, J. Algebra 181 (1996), pp. 371–394.

Valdis Laan1, László Márki2, Ülo Reimaa3
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On invariance of recursive differentiability under

the isotopy of left Bol loops

Inga Larionova-Cojocaru, Parascovia Syrbu

Abstract

We prove that the recursive derivatives of order 1 of isotopic
left Bol loops are isotopic and that every loop, isotopic to a recur-
sively 1-differentiable left Bol loop, is recursively 1-differentiable.
The recursive differentiability of di-associative loops is also con-
sidered.

Keywords: Recursively differentiable quasigroup, recursive
derivative, isostrophe, core, LIP-loop, left Bol loop

1 Introduction

Recursively s-differentiable quasigroups (s ≥ 1) have been defined in
[1], were they appear as check functions of complete recursive codes.
Let (Q, ·) be a quasigroup and let i be a natural number. The operation

(
i
· ), defined recursively on Q as follows:

x
0

· y = x · y, x
1

· y = y · (x · y), x
i
· y = (x

i−2

· y) · (x
i−1

· y),

for ∀x, y ∈ Q, is called the recursive derivative of order i of (Q, ·).
A quasigroup (Q, ·) is called recursively s-differentiable if its recursive

derivatives (Q,
i
· ) are quasigroups, for all i = 0, 1, ..., s. If (Q, ·) is a

loop then the grupoid (Q,+), where x + y = x · (y \ x),∀x, y ∈ Q, is
called the core of (Q, ·). The notion of core of a loop was introduced by
R. Bruck [2] for Moufung loops and studied by V. Belousov in left Bol
loops [3]. It is shown in [4] that in LIP -loops the core is isostrophic to
the recursive derivative of order 1.

c©2017 by I. Larionova-Cojocaru, P. Syrbu
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We study the invariance of recursive differentiability under the iso-
topy of LIP-loops in the present work. It is proved that the recursive
derivatives of order 1 of isotopic left Bol loops are isotopic and that
every loop, isotopic to a recursively 1-differentiable left Bol loop, is
recursively 1-differentiable. Also we show that the recursive deriva-
tive of order 1 of a recursively 1-differentiable di-associative loop is an
RIP -quasigroup.

2 Recursive derivatives and cores

Let (Q, ·) be an LIP-loop. We’ll denote below by I(·) the inversion in
(Q, ·) : I(·)(x) = x−1, ∀x ∈ Q.

Theorem 1. If the cores of two LIP-loops are isotopic then their

recursive derivatives of order one are isotopic.

Proof. Let (Q,⊕) and (Q,+) be the cores and let (Q,
1

◦) and (Q,
1

·)
be the recursive derivatives of order 1 of two loops (Q, ◦) and (Q, ·),
respectively. If (Q,⊕) and (Q,+) are isotopic then ∃α, β, γ ∈ SQ:
γ(x⊕ y) = α(x) + β(y) ⇔ γ(x ◦ [I(◦)(y) ◦ x]) = α(x) · [I(·)β(y) · α(x)],
∀x, y ∈ Q. Replacing y 7→ I(◦)(y), we obtain γ[x ◦ (y ◦ x)] = α(x) ·

[I(·)βI(◦)(y) ·α(x)] ⇔ γ(y
1

· x) = I(·)βI(◦)(y)
1

· α(x), for ∀x, y ∈ Q, hence

(Q,
1

◦) and (Q,
1

·) are isotopic.

V. Belousov [3] proved that the cores of isotopic left Bol loops are
isomorphic. This fact and the previous theorem imply the following
corollaries.

Corollary 1. The recursive derivatives of order 1 of isotopic left

Bol loops are isotopic.

Corollary 2. Every loop isotopic to a recursively 1-differentiable
left Bol loop is recursively 1-differentiable.

Proposition 1. If the cores of two LIP -loops (Q, ◦) and (Q, ·) are
isomorphic and ϕ is an isomorphism between them, then the recursive

derivatives (Q,
1

◦) and (Q,
1

·) are isomorphic if and only if I(·)ϕI(◦) = ϕ.

Proof. Let (Q,⊕) and (Q,+) be the cores and (Q,
1

◦) and (Q,
1

·)
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be the recursive derivatives of order 1 of two LIP -loops (Q, ◦) and
(Q, ·), respectively. If ϕ is an isomorphism between the cores, then
ϕ(x⊕y) = ϕ(x)+ϕ(y) ⇔ ϕ(x◦(I(◦)(y)◦x)) = ϕ(x) ·(I(·)ϕ(y) ·ϕ(x)) ⇔

ϕ(I(◦)(y)
1

◦ x) = I(·)ϕ(y)
1

· ϕ(x). Replacing I(◦)(y) 7→ y, we obtain

ϕ(y
1

◦ x) = I(·)ϕI(◦)(y)
1

· ϕ(x) for ∀x, y ∈ Q. Hence ϕ is an isomorfism

from (Q,
1

◦) to (Q,
1

·) if and only if I(·)ϕI(◦) = ϕ.

Corollary 3. If two left Bol loops (Q, ◦) and (Q, ·) are isotopic

and ϕ is an isomorphism between their cores then (Q,
1

◦) and (Q,
1

·) are
isomorphic if and only if I(·)ϕI(◦) = ϕ.

Theorem 2. Let (Q, ·) be a di-associative loop. Then (Q, ·) is re-

cursively differentiable if and only if the mapping x 7→ x2 is a bijection.

Moreover, if (Q, ·) is recursively 1-differentiable then its recursive de-

rivative of order 1 is an RIP -quasigroup.

Proof. Let (Q, ·) be a di-associative loop. Its recursive derivative

of order 1, (Q,
1

·) is a quasigroup if the equations a
1

· x = b and y
1

· a = b

have unique solutions in Q for all a, b ∈ Q. But y
1

· a = b ⇔ a · ya = b
has a unique solution in Q, for all a, b ∈ Q. Hence (Q, ·) is recursively
1-differentiable if and only if

a
1

· x = b ⇔ x · ax = b⇔ ax · ax = ab⇔ (ax)2 = ab

has a unique solution in Q, for all a, b ∈ Q, i.e. if and only if the
mapping x 7→ x2 is a bijection.

If (Q, ·) is recursively 1-differentiable, then (Q,
1

·) is a quasigroup,

and (y
1

· x)
1

· x−1 = x−1 · (x · yx) · x−1 = y, as (Q, ·) is a di-associative

loop. Hence (Q,
1

·) is an RIP -quasigroup.

Proposition 2. [5] Let (Q, ·) be a quasigroup and let (Q, ◦) be a

quasigroup with a right unit e. If x ◦ y = ϕ(y) · ψ(x), for ∀x, y ∈ Q,
and ψ ∈ Aut(Q, ◦), then RM(Q, ◦)△LM(Q, ·).

Corollary 4. If (Q, ·) is a recursively 1-differetiable left Bol loop,

(Q,+) is its core and (Q,
1

·) is its recursive derivative of order 1, then

RM(Q,
1

·)△LM(Q,+).
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Proof. Let (Q, ·) be a recursively 1-differetiable left Bol loop, then

its core (Q,+) and its recursive derivative of order 1 (Q,
1

·) are qua-
sigroups. It is shown in [4] that: the unit of (Q, ·) is the right unit

of (Q,
1

·), x + y = I(·)(y)
1

· x and that, if (Q, ·) is a left Bol loop, then

I(·)(x
1

· y) = I(·)(x)
1

· I(·)(y). Hence the quasigroups (Q,+) and (Q,
1

·),

where x + y = I(·)(y)
1

· x and I(·) ∈ Aut(Q,
1

·), fulfill the conditions of

the previous proposition, hence RM(Q,
1

·)△LM(Q,+).
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Goal-Driven Machine Proof Search in

Intuitionistic First-Order Logic

Alexander V. Lyaletski

Abstract

A sequent calculus is proposed for machine-oriented proof se-
arch in intuitionistic first-order logic without equality. One of
its distinctive features is that for optimizing quantifier handling,
the author’s original notions of admissibility and compatibility
of substitutions of terms for variables are used. Another is that
the selection of some proportional rules for its application in an
inference tree is “driven” by a formula from the succedent of a se-
quent under consideration. The proposed calculus is sound and
complete and can serve as a basis for constructing provers for
proof search in intuitionistic first-order logic.

Keywords: intuitionistic first-order logic, admissibility, com-
patibility, validity, completeness, machine proof search.

1 Introduction

In a number of the author’s papers (see, for example, [1]), an approach
is developed for optimizing quantifier handling in sequential calculi.
It bases on the original notions of the admissibility of a substitution
of terms for variables and its compatibility with a (constructed) se-
quent inference tree and leads to improving the efficiency of machine
proof search in nonclassical first-order logics, in particular, in intuiti-
onistic logic. However, in that papers there are no recommendations
for optimizing orders of propositional rule applications. The purpose
of this work is to show that for intuitionistic logic without equality, one

c©2017 by Alexander V. Lyaletski
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can construct a sequential calculus (that uses the author’s admissibi-
lity and compatibility instead of the Gentzen [2] and Kanger [3] ones)
giving also a certain (“goal-driven”) optimization of orders of certain
propositional rule applications.

2 Goal-driven sequent calculus

We refer to [1] and the papers cited therein for all precise notions and
definitions that are used in our sequent treatment of intuitionistic logic
without equality and are not formally introduced here. This treatment
as a sequent calculus denoted by LJ∗ and combining some of the ideas
of G. Gentzen and S. Kanger is given in Figure 1. The calculus LJ∗ is
intended for the establishing of the deducibility of a sequent → F in
the Gentzen intuitionistic calculus LJ [2] (F is a usual closed formula).

The notion of a positive and negative occurrence of a formula and
quantifier in a formula and sequent is used in the usual sense. If a fixed
occurrence of a formula G in a formula F from a sequent has a posi-
tive (negative) occurrence, then we write F 〈+G〉 (F 〈−G〉). Following
[3], the variable of a positive quantifier is called a parameter and the
variable of a negative quantifier is called a dummy.

Let A and A′ be atomic formulas of the forms P (t1, . . . , tn)
and P (t′

1
, . . . , t′n) respectively, where P is a predicate symbol and

t1, . . . , tn, t
′

1
, . . . , t′n are terms. If there exists a most general simul-

taneous unifier (mgsu) σ of the sets {t1, t
′

1
}, . . . , {tn, t

′

n}, then this fact
is denoted by A ≈ A′ w.r.t. the mgsu σ.

For each usual propositional (quantifier) connective ⊙ (Qx, where
Q is ∀ or ∃ and x is a variable) we introduce the countable set of its
“copies” 1

j⊙, 2j⊙, . . . , ij⊙, . . . (1jQ
1

jx,
2

jQ
2

jx, . . . ,
i
jQ

i
jx, . . .) with the same

semantic interpretation that ⊙ (Qx) has, where j = 1, 2, . . ..

The establishing of the deducibility of a sequent → F in LJ is
replaced by the establishing of the deducibility of the so-called starting

sequent → 1[νF ], where 1[νF ] is constructed according to [1]: if ⊙ (Qx)
occurs in F and occupies in F the nth position when looking through
F from left to right, then 1[νF ] contains 1

n⊙ (1nQ
1
nx) instead of ⊙ (Qx);

at that, all the other occurrences of x in 1[νF ] become 1
nx.
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Axioms :

Γ, A → A

Goal splitting rules :

Γ, F →

Γ → i
n¬F

(→ ¬)
Γ, F → G

Γ → F i
n ⊃ G

(→⊃)

Γ → F l+1[Γ] → l+1[G]

Γ → F i
n∧ G

(→ ∧)

Γ → F

Γ → F i
n∨ G

(→ ∨1)
Γ → G

Γ → F i
n∨ G

(→ ∨2)

Premise splitting rules :

Γ → F 〈−A′〉

Γ, i
n¬F 〈−A′〉 →

(¬ →)

l+1[Γ] → l+1[F ] Γ, G〈−A′〉 → +A

Γ, F i
n ⊃ G〈−A′〉 → +A

(⊃→)

Γ, F 〈−A′〉 → +A

Γ, F 〈−A′〉 i
n∧ G → +A

(∧1 →)
Γ, G〈−A′〉 → +A

Γ, F i
n∧ G〈−A′〉 → +A

(∧2 →)

Γ, F 〈−A′〉 → +A l+1[Γ], l+1[G] → l+1[+A]

Γ, F 〈−A′〉 i
n∨ G → +A

(∨1 →)

l+1

[Γ], l+1[F ] → l+1[A] Γ, G〈−A′〉 → +A

Γ, F i
n∨ G〈−A′〉 → +A

(∨2 →)

Contraction rules :

Γ, l+1[F ], F 〉 → G

Γ, F → G
(Con →)

Γ → l+1[A]

Γ → A
(→ Con)

Quantifier rules :

Γ → l+1[G]|
i

n
x

(l+1)+i
n
x

Γ → i
n∀

i
nxG

(→ ∀)
Γ, l+1[F ]|

i

n
x

(l+1)+i
n
x
→ G

Γ, in∀
i
nxF → G

(∀ →)

Γ, l+1[F ]|
i

n
x

(l+1)+i
n
x
→ G

Γ, in∃
i
nxF → G

(∃ →)
Γ → l+1[G]|

i

n
x

(l+1)+i
n
x

Γ → i
n∃

i
nxG

(→ ∃)

Γ is a multiset of formulas, F and G are formulas, A and A′ are atomic formulas;

at that, A ≈ A′ w.r.t. an mgsu. In the succedents of the sequents from the (∀ →),

(∃ →), (Con →), and premise splitting rules, G and A can be absent. (l+1)+i

nx

and (l+1)+i

nx are (new) dummy and parameter respectively. The operation l+1[·]

replaces all the left upper indexes in F , G, and Γ by new indexes by the procedure

given in [1] and produces new “copies” of formulas, where l is the largest left upper

index in an inference tree constructed to the time of application of a corresponding

rule. |
i

n
x

(l+1)+i
n
x
(|

i

n
x

(l+1)+i
n
x
) denotes the replacing of i

nx by (l+1)+i

nx (by (l+1)+i

nx).

Figure 1. Sequent calculus LJ∗ for intuitionistic logic
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3 Main result

Proof search in LJ∗ has the form a tree called an inference tree growing
in the Kander style [3] from bottom to top in attempting to produce
a latent proof tree, being a tree, all leaves of which are of the form
Γ, A′ → A, where A and A′ are atomic formulas and A′ ≈ A. It consists
of three steps: firstly we try to apply (in any order) quantifier rules and,
maybe, several contraction rules as long as they are applicable, then
we try to apply goal splitting rule as long as they are applicable, and
after this we try to apply premise splitting rules (“driven” by an atomic
formula from the succedent of a sequent under consideration).

Theorem. For a closed formula F , the sequent → F is deducible in

LJ (i.e. F is intuitionistically valid) if and only if an inference tree Tr
for the starting sequent → 1[νF ] can be constructed in the LJ

∗ calculus

and a substitution σ of terms without dummies for all the free dummies

from Tr can be selected in such a way that the following conditions take

place: (i) Tr is a latent proof tree for → 1[νF ] ; (ii) the application

of σ to all the leaves of Tr converts these leaves into axioms; (iii) σ is

admissible for Tr, (iv) Tr is compatible with σ w.r.t. LJ
∗.

In conclusion, the author hopes that ideas presented in this work
will be useful in constructing intuitionistic first-order provers.
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Refutation Search and Literal Trees Calculi

Alexandre A. Lyaletsky

Abstract

Special calculi which can be considered as extensions of the
SLD and input resolutions on the case of sets of abitrary clau-
ses are constructed for doing refutation in the form of tree-like
structures. The results on their validity and completeness are
given.

Keywords: classical first-order clausal logic, clause, literal
tree, SLD resolution, input resolution, refutation, satisfiability.

1 Introduction

Usually, many intelligent systems, for example, logical programming
systems, contain different versions of the so-called SLD resolution or
input resolution as their logical engines providing a complete refutation
technique for sets of Horn clauses. But they are not complete for sets
of arbitrary clauses. In this connection, the following question arises:
How should we modify the SLD or input resolution in order to get their
extensions being complete in the general case?

There are results that gives methods for constructing such refu-
tation extensions of the SLD and input resolutions (see, for example,
[1, 2]) and they can be interpreted as complete refutation search met-
hods in the linear format [3]. This paper contains another answer on
the above-asked question for making refutation search in the form of
tree-like structures being a well-formed expressions of certain calculi.
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2 Calculi of Literal Trees

Classical first-order logic without equality is considered. The problem
of a refutation of a set of clauses is solved. In this connection, all the
notions of the Robinson resolution technique are assumed to be known
(see, for example, [4]). Remind that a literal is an atomic formula or
its negation.

For refutation search, i.e. for the establishing the insufficiency of an
input set MI being a set of original (input) clauses, two special calculi
of so-called literal trees are constructed. They are denoted by LT and
LT♯, in which literal trees “grow from top to bottom”.

A literal tree is a usual tree, the root of which is labeled by MI

and all the other nodes are labeled by literals. Additionally, we assume
that the symbol ♯ can be used as a label for any leaf of a literal tree.

A tree without any nodes is denoted by △.

A literal tree is called closed, if it is △ or all the labels of all its
leaves are ♯.

A variant of a literal tree Tr is called a tree, the nodes of which
are variants (in the usual sense) of literals of Tr.

If Tr is a literal tree and σ a substitution, then Tr · σ is the result
of the application of σ to all the labels of the nodes of Tr (♯ · σ = ♯).

Let MI be an input set of clauses and a clause L1∨ . . .∨Ln belongs
to MI , where L1, . . . , Ln are literals. Then the tree consisting of the
root labeled by MI and n its successors labeled by L1, . . . , Ln is called
an input (literal) tree for MI w.r.t. L1 ∨ . . . ∨ Ln.

New trees are produced by the inference rules given below. At
that, any inference in a literal trees calculus is a sequence of literal
trees Tr1, . . . , T rm, in which Tr1 is an input tree and for the each
1 < j ≤ n, Trj is deduced from a variant of Trj−1 by one of the
inference rules.

Let C ∈ MI , Tr1, . . . , T rm be an inference in a literal trees calculus,
in which Tr1 is an input tree for MI w.r.t. C and Trm is a closed tree.
Then Tr1, . . . , T rm is called a refutation of MI w.r.t. C in this calculus.

The calculus LT contain the below given IC and CL rules.
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Input clause extension rule (IC rule). Let MI be an input set of
clauses and L1 ∨ . . .∨Ln ∈ MI (n ≥ 1). Let Tr be a variant a tree not
having common variables with L1 ∨ . . . ∨ Ln and E be the most right
leaf of Tr distinguishing from ♯. Suppose that for some i (1 ≤ i ≤ n)
there exists the most general unifier σ of the set {Li, E}, where E
denotes the complementary to E. Let us construct the literal tree Tr′

in the following way: (1) if n > 1, then Tr′ is constructed from Tr by
adding n− 1 nodes to the node with E as its successors and assigning
L1, . . . , Li−1, Li+1, . . . , Ln as their labels and (2) if n = 1, then Tr′ is
constructed from Tr by adding the unique node to the node with E
as its successor and assigning ♯ as its label. Then Tr′ · σ is said to be
deducable from Tr and L1 ∨ . . . ∨ Ln by the IC rule.

Contrary Literals rule (CL rule). Let Tr be a literal tree and Br its
the most right branch with the leaf labeled by a literal L distinguished
from ♯. Suppose Br contains a node with such a literal E that there
exists the most general unifier σ of the set {L,E}, where E denotes
the complementary to E. If Tr′ is constructed from Tr by adding the
unique node to the leaf with L as its successor and assigning ♯ as its
label, then Tr′ · σ is said to be deducable from Tr by the CL rule.

Theorem 1. If MI is an input set of clauses, C ∈ MI , and MI\{C}

is a satisfied set, then MI is an unsatisfiable set if and only if in the
LT calculus there exists a refutation of MI w.r.t. C.

Refutation search in LT leads to producing successively increasing
trees, which is not good in the case of implementing LT. The next rule
is intended for improving this situation.

Chain Scratching rule (CS rule). Let Tr be a literal tree and Br its
branch with a leaf L labeled by ♯. Suppose Ch denotes such a maximal
chain in Br that Ch contains L and each node of Ch except L has
only one successor. Then a tree Tr′ constructed by deleting Ch in Tr
is called a tree deduced from Tr by the CS rule.

By LT♯ denote the LT calculus, to which the CS rule is added. We
require that in LT♯, the CS rule always is applied after any applications
of the IC and CL rules.

Theorem 2. If MI is an input set of clauses, C ∈ MI , and MI\{C}

127



Alexandre A. Lyaletsky

is a satisfied set, then MI is an unsatisfiable set if and only if in the
LT

♯ calculus there exists such a refutation Tr1, . . . , T rm of MI w.r.t.
C that Trm is △.

3 Literal trees calculi and complete tree-like

extensions of SLD and input resolutions

The SLD and input resolutions are usually used in many intelligent
systems as their logical engines. They are complete methods for an in-
put set of Horn clauses and are not complete in the general case.

Comparing the SLD and input resolutions with the LT and LT♯

calculi and using Theorems 1 and 2, we can get the following result.

Corollary. The LT and LT
♯ calculi can be considered as complete

tree-like extensions of the SLD and input resolutions on the case of an
input set of arbitrary clauses.

Corollary demonstrates that the calculi LT and LT♯ can be “gui-
delines” for making complete tree-like extensions of SLD and input
resolutions on the case of an input set of arbitrary clauses by adding
to them the simple CL and CS rules. That is we have an uncomplica-
ted way for increasing deductive capabilities of one or other intelligent
system with a logical engine based on the SLD or input resolution.
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On Recursive Derivates of k-ary Operations

Aleksandra Mileva, Vesna Dimitrova

Abstract

We present several results about recursive derivates of k-ary
operations defined on a finite set Q. They are generalizations
of some binary cases given by Larionova-Cojocaru and Syrbu
[5]. Also, we present several experimental results about recursive
differentiability of ternary quasigroups of order 4.

Keywords: recursively differentiable quasigroups, orthogo-
nality

1 Introduction

Let Q be a nonempty set and let k be a positive integer. We will use
(xk

1
) to denote the k-tuple (x1, . . . , xk) ∈ Qk. A k−ary operation f

on the set Q is a mapping f : Qk → Q defined by f : (xk
1
) → xk+1,

for which we write f(xk
1
) = xk+1. A k-ary groupoid (k ≥ 1) is an

algebra (Q, f) on a nonempty set Q as its universe and with one k-ary
operation f . A k-ary groupoid (Q, f) is called a k-ary quasigroup (of
order |Q| = q) if any k of the elements a1, a2, . . . , ak+1 ∈ Q, satisfying
the equality f(ak

1
) = ak+1, uniquely specifies the remaining one.

The k−ary operations f1, f2, . . . , fd, 1 ≤ d ≤ k, defined on a set
Q are orthogonal if the system {fi(x

k
1
) = ai}

d
i=1

has exactly qk−d

solutions for any a1, . . . , ad ∈ Q, where q = |Q| [2]. There is an one-
to-one correspondence between the set of all k-tuples of orthogonal
k-ary operations < f1, f2, . . . , fk > defined on a set Q and the set of
all permutations θ : Qk → Qk ([2]), given by

θ(xk
1
) → (f1(x

k
1
), f2(x

k
1
), . . . , fd(x

k
1
)).
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The k-ary operation Ij , 1 ≤ j ≤ k, defined on Q with Ij(x
k
1
) = xj

is called the j-th selector or the j-th projection.

A system Σ = {f1, f2, . . . , fs}s≥k of k-ary operations is called
orthogonal, if every k operations of Σ are orthogonal. A system
Σ = {f1, f2, . . . , fr}, r ≥ 1 of distinct k−ary operations defined on a set
Q is called strong orthogonal if the system {I1, . . . , Ik, f1, f2, . . . , fr}
is orthogonal, where each Ij , 1 ≤ j ≤ k, is j−th selector. It follows that
each operation of a strong orthogonal system, which is not a selector,
is a k-ary quasigroup operation.

A code C ⊆ Qn is called a complete k-recursive code if there
exists a function f : Qk → Q (1 ≤ k ≤ n) such that every code word
(u0, . . . , un−1) ∈ C satisfies the conditions ui+k = f(ui+k−1

i ) for every
i = 0, 1, . . . , n−k−1, where u0, . . . , uk−1 ∈ Q. It is denoted by C(n, f).

C(n, f) can be represented by

C(n, f) = {(xk1 , f
(0)(xk1), . . . , f

(n−k−1)(xk1)) : (x
k
1) ∈ Qk}

where f (0) = f (0)(xk
1
) = f(xk

1
),

f (1) = f (1)(xk
1
) = f(xk

2
, f (0))

. . .
f (k−1) = f (k−1)(xk

1
) = f(xk, f

(0), . . . , f (k−2))
f (i+k) = f (i+k)(xk

1
) = f(f (i), . . . , f (i+k−1)) for i ≥ 0

are recursive derivatives of f . The general form of the recursive
derivatives for any k-ary operation f is given in [4], and f (n) = fθn,
where θ : Qk → Qk, θ(xk

1
) = (xk

2
, f(xk

1
)).

A k-quasigroup (Q, f) is called recursively t-differentiable if all
its recursive derivatives f (0), . . . , f (t) are k-ary quasigroup operations
[3]. A k-quasigroup (Q, f) is called t-stable if the system of all re-
cursive derivatives f (0) . . . , f (t) of f is an orthogonal system of k-ary
quasigroup operations, i.e. C(k + t + 1, f) is an MDS code [3]. A k-
ary quasigroup (Q, f) is called strongly recursively t-differentiable
if it is recursively t-differentiable and f (t+1) = I1 (introduced for bi-
nary case in [1]). A k-ary quasigroup (Q, f) is strongly recursively
0-differentiable if f (1) = I1.
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2 Main results

The following results are generalisation of binary cases for recursive
derivates from [5].

Proposition 1. Let (Q, f) be a k-ary groupoid. For every (xk
1
) ∈ Qk

the following equalities hold:

f (n)(xk
1
) = f (n−1)(xk

2
, f (0)(xk

1
)),∀n ∈ N

Proposition 2. Let (Q, f) be a k-ary groupoid. For every (xk
1
) ∈ Qk

and for every j = k−1, . . . , n−1, where n ≥ k, the following equalities

hold:

f (n)(xk
1
) = f (n−j−1)(f (j−k+1)(xk

1
), . . . , f (j)(xk

1
))

Proposition 3. If two k-ary groupoids (Q1, f) and (Q2, g) are iso-

morphic, then their recursive derivatives (Q1, f
(n)) and (Q2, g

(n)) are

isomorphic too, for every n ≥ 1.

Proposition 4. If (Q, f) is a k-ary groupoid, then Aut(Q, f) is a

subgroup of Aut(Q, f (n)), for every n ≥ 1.

3 Experimental results for ternary quasigroups

of order 4

By experiments, we obtained the following results:

• there are 96 recursively 1-differentiable ternary quasigroups of
order 4, and all are 1-stable

• there are no recursively t-differentiable ternary quasigroups of
order 4, for t ≥ 2,

• there are 64 strongly recursively 0-differentiable ternary qua-
sigroups of order 4,

• there are 8 strongly recursively 1-differentiable ternary qua-
sigroups of order 4.
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Bellow is an example of strongly recursively 1-differentiable and
1-stable ternary quasigroups of order 4.

{{{1, 2, 3, 4}, {3, 4, 1, 2}, {4, 3, 2, 1}, {2, 1, 4, 3}}, {{2, 1, 4, 3}, {4, 3, 2, 1}, {3, 4, 1, 2}, {1, 2, 3, 4}},

{{3, 4, 1, 2}, {1, 2, 3, 4}, {2, 1, 4, 3}, {4, 3, 2, 1}}, {{4, 3, 2, 1}, {2, 1, 4, 3}, {1, 2, 3, 4}, {3, 4, 1, 2}}}
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Contract No. 16-4700/1 from 29.02.2016 has supported part of the
research for this paper.
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Non-commutative finite rings with several

mutually associative multiplication operations

Alexander Moldovyan, Nicolay Moldovyan, Victor Shcherbacov

Abstract

Some properties of non-commutative finite rings of four-
dimension vectors with several mutually associative multiplica-
tion operations are presented.

Keywords: ring, Galois field, vector, local left unit element,
bi-side unit element, associative law.

1 Introduction

Finite non-commutative rings are of interest for designing public-key
cryptoschemes based on the discrete logarithm problem in hidden com-
mutative subgroup [1, 2, 3].

Suppose e, i, j, k be some formal basis vectors and a, b, c, d ∈

GF (p), where p ≥ 3 is a prime number, are coordinates. The vectors
are denoted as ae+ bi+ cj+ dk or as (a, b, c, d). The terms τv, where
τ ∈ GF (pd) and v ∈ {e, i, j,k}, are called components of the vector.

The addition of two vectors (a, b, c, d) and (x, y, z, v) is defined via
addition of the corresponding coordinates accordingly to the following
formula (a, b, c, d) + (x, y, z, v) = (a+ x, b+ y, c+ z, d+ v).

The multiplication of two vectors ae+bi+cj+zk and xe+yi+zj+vk
is defined by the following formula

(ae+ bi+ cj+ dk) ◦ (xe+ yi+ zj+ vk) =
= axe◦e+bxi◦e+cxj◦e+dxk◦...◦j+ave◦k+bvi◦k+cvj◦k+dvk◦k,

c©2017 by Alexander Moldovyan, Nicolay Moldovyan, Victor Shcherbacov
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Table 1. The basis-vector multiplication table

◦ −→e −→ı
−→
j

−→
k

−→e e µk µe k
−→ı τ j i j τ i
−→
j j µi µj i
−→
k τe k e τk

where ◦ denotes the vector multiplication operation and each product
of two basis vectors is to be replaced by some basis vector or by a one-
component vector in accordance with the basis-vector multiplication
table (BVMT) defining associative and non-commutative multiplica-
tion. In this paper there is introduced a novel BVMT that defines
parameterized multiplication operation different modification of which
are mutually associative. The proposed BVMT is shown in Table 1,
where µ ∈ GF (p) and τ ∈ GF (p) are structural coeficients.

2 Properties of the introduced ring

Statement 1. Suppose ◦ and ⋆ are two arbitrary modifications of
the vector multiplication operation, which correspond to different pair
of structural coefficients (µ1, τ1) and (µ2, τ2) 6= (µ1, τ1). Then for
arbitrary three vectors A, B, and C it holds the following formula
(A ◦B) ⋆ C = A ◦ (B ⋆ C).

Statement 2. The vector E =
(

1

1−µτ
, 1

1−µτ
, τ
µτ−1

, µ
µτ−1

)
is the

(global) unity element of the considered ring, i.e. for arbitrary vector
V it holds V ◦E = E ◦ V = V.

Statement 3. Vectors V = (a, b, c, d) , where ab 6= cd, are inverti-
ble.

Statement 4. The order Ω of the multiplicative group of the
considered ring is equal to Ω = p(p− 1)(p2 − 1).

Statement 5. For an arbitrary vector N = (a, b, c, d) such that
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ab = cd and aτ + c 6= 0 each of the vectors

El =

(

x,
c

aτ + c
−

a+ cµ

aτ + c
z, z,

a

aτ + c
−

a+ cµ

aτ + c
x

)

,

where x, y ∈ GF (p) acts as the left local unity element for all elements
N i, where i > 0 is an arbitrary integer, i.e. it holds El ◦N

i = N i.

Statement 6. For an arbitrary vector N = (a, b, c, d) such that
ab = cd and aµ+ d 6= 0, each of the vectors

Er =

(

x,
d

aµ+ d
−

a+ dτ

aµ+ d
w,

a

aµ+ d
−

a+ dτ

aµ+ d
x,w

)

,

where x,w ∈ GF (p) acts as the right local unity element for all elements
N i, where i > 0 is an arbitrary integer, i.e. it holds N i ◦ Er = N i.

Statement 7. Suppose N = (a, b, c, d) be a non-invertible vector,
i.e. ab = cd. Then the sequence N,N2, ..., N i, ..., where i = 1, 2, ..., is
periodic and for some integer ω we have Nω = E′, where E′ is the local
unity element such that N ◦ E′ = E′ ◦N = N.

Statement 8.The local bi-side unity elementE′ is describedwith the

following formula E′ =
(
x0,

d
aµ+d

− a+dτ
aµ+d

· d
a
x0,

d
aµ+d

− a+dτ
aµ+d

x0,
d
a
x0

)
,

where x0 =
a2

caµ+cd+a2+adτ
.

Statements 5 to 7 show that the set of non-invertible vectors inclu-
des different cyclic groups with different local unity elements.

There exist homomorphisms of the multiplicative group of the consi-
dered ring into the set of non-invertible vectors. SupposeN = (a, b, c, d)
be a non-invertible vector such that Nω = E′ and V1, V2 are two in-
vertible vectors. The function ϕ(V ) = Nω−i ◦ V ◦N i defines a homo-
morphic mapping: ϕ(V1 ◦ V2) = ϕ(V1) ◦ ϕ(V2). The function ϕ(W ) =
Nω−i ◦W ◦N i defines a homomorphic mapping of the considered ring
into the set of its non-invertible vectors: ϕ(W1 ◦W2) = ϕ(W1)◦ϕ(W2);
ϕ(W1+W2) = ϕ(W1)+ϕ(W2), whereW1 andW2 are two arbitrary vec-
tors of the ring. Selecting different values i and different non-invertible
vectors N it is possible to define a variety of homomorphic maps.
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Like in papers [2, 3], one can construct public-key crypto-schemes
using the homomorphisms in the considered finite ring of four dimen-
sion vectors.
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Program-oriented Logics of Non-Deterministic

Quasiary Predicates

Mykola Nikitchenko, Stepan Shkilniak

Abstract

Program-oriented logics defined for classes of quasiary pre-
dicates are studied. Such predicates are partial predicates over
partial states (partial assignments) of variables. Conventional
n-ary predicates can be considered as a special case of quasiary
predicates. We define extended first-order logics of quasiary non-
deterministic predicates. A special consequence relation, ade-
quate for such logics, is introduced and its semantic properties
are studied. Obtained results are used to prove logic validity and
completeness.

Keywords: first-order logic, quasiary predicate, partial pre-
dicate, non-deterministic predicate.

1 Introduction

Logics of quasiary predicates can be considered as a natural generali-
zation of classical predicate logic. The latter is based upon total n-ary
predicates which represent fixed and static properties of subject dom-
ain. Though classical logics and its various extensions are wildly used
in computer science some restrictions of such logics should be menti-
oned. For example, in computer science partial and non-deterministic
predicates over complex data structures often appear. Therefore there
is a need to construct such logical systems that better reflect above-
mentioned features. One of specific features for computer science is
quasiarity of predicates. Such predicates are partial predicates defined
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over partial states (partial assignments) of variables and, consequently,
they do not have fixed arity. Conventional n-ary predicates can be
considered as a special case of quasiary predicates.

In our previous works [1, 2] we primarily investigated the class of
partial deterministic predicates and constructed corresponding logics.
Here we aim to construct a logic of non-deterministic quasiary pre-
dicates. The logic construction consists of several phases: first, we
construct predicate algebras, terms of which specify the language of a
logic; then we define interpretation mappings and a consequence rela-
tion; at last, we construct a calculus for the defined logic.

2 Algebras of non-deterministic quasiary pre-

dicates

Let V and A be nonempty sets of variables (names) and basic values

respectively. Given V and A, the class VA of nominative sets is defined
as the class of all partial mappings from V to A, thus, VA = V

p
−→ A.

Intuitively, nominative sets represent states of variables.

The main operation for nominative sets is a total unary parame-

tric renomination rv1,...,vnx1,...,xn
: VA

t
−→ VA where v1, ..., vn, x1, ..., xn ∈ V ,

v1, ..., vn are distinct names, n ≥ 0. Informally, given d this opera-
tion yields a new nominative set changing the values of v1, ..., vn to the
values of x1, ..., xn respectively.

Let PrRV
A = VA

r
−→ Bool be the set of all non-deterministic (relati-

onal) predicates over VA. Such predicates are called non-deterministic

quasiary predicates. Note that non-determinism in logic was intensively
studied, but primarily for propositional level, see, for example, [3].

For p ∈ PrRV
A the truth and falsity domains of p are denoted T (p)

and F (p) respectively.

Operations over PrRV
A are called compositions. Basic compo-

sitions for quasiary predicates are disjunction ∨, negation ¬, re-
nomination Rv1,...,vn

x1,...,xn
, and existential quantification ∃x. We extend

them with null-ary composition εx called variable unassignment pre-
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dicate. Thus, the extended set CE(V ) of first-order compositions is
{∨,¬, Rv1,...,vn

x1,...,xn
,∃x, εz}.

Please note that the compositions are similar to strong Kleene’s
connectives and quantifiers.

A pair AQE(V,A) =< PrRV
A ;CE(V ) > is called a first-order ex-

tended algebra of non-deterministic quasiary predicates.

We investigate the main semantic properties of such algebras, focu-
sing on properties of renominations and quantifiers.

3 Logic of non-deterministic quasiary predica-

tes

Algebras AQE(V,A) (for various A) form a semantic base for the con-
structed first-order extended quasiary predicate logic LQE. The set of
terms (formulas) specifies the logic language. Formula interpretations
are defined in a traditional way.

Usually, for logics of quasiary predicates an irrefutability conse-
quence relation is defined [1, 2]: a set of formulas ∆ is a consequence of
a set of formulas Γ in an interpretation J , if

⋂

Φ∈Γ
T (ΦJ)∩

⋂

Ψ∈∆
F (ΨJ) = ∅.

For the class of non-deterministic predicates this consequence rela-
tion is very poor. Therefore we introduce another consequence relation
which arises naturally in computer science [4]: ∆ is a TF-consequence

of Γ in an interpretation J , if
⋂

Φ∈Γ
T (ΦJ) ⊆

⋃

Ψ∈∆
T (ΨJ) and

⋃

Φ∈Γ
F (ΦJ) ⊇

⋂

Ψ∈∆
F (ΨJ ).

Properties of this consequence relation are investigated. It is proved
that this relation is paraconsistent, paracomplete, and paranormal.

4 Sequent calculus for logic of non-deterministic

quasiary predicates

Sequent rules are derived from the properties of the consequence rela-
tion, but additionally we should introduce special sequent closedness
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conditions that take into consideration unassigned variables. Obtained
calculus is called QE-calculus. We prove the main result of the paper:
QE-calculus is sound and complete.

5 Conclusion

In this paper we have studied program-oriented logics defined for clas-
ses of non-deterministic quasiary predicates. For such logics we have
constructed a special sequent calculus and proved its soundness and
completeness.

References

[1] M. Nikitchenko, S. Shkilniak. Applied Logic, Publishing house of
Taras Shevchenko National University of Kyiv, Kyiv, 2013, 278 p.
(in Ukrainian).

[2] M. Nikitchenko, V. Tymofieiev. Satisfiability in composition-

nominative logics, Central European Journal of Computer Science,
vol. 2, no. 3 (2012), pp. 194–213.

[3] A. Avron, A. Zamansky. Non-deterministic semantics for logi-

cal systems. Handbook of Philosophical Logic, D.M. Gabbay, F.
Guenthner (eds.), 2nd ed., vol. 16, Springer Netherlands (2011),
pp. 227–304.

[4] A. Kryvolap, M. Nikitchenko, W. Schreiner. Extending Floyd-

Hoare logic for partial pre- and postconditions, CCIS, vol. 412
(2013), Springer, Heidelberg, pp. 355–378.

Mykola Nikitchenko1, Stepan Shkilniak2

1Taras Shevchenko National University of Kyiv

Email: nikitchenko@unicyb.kiev.ua

2Taras Shevchenko National University of Kyiv

Email: sssh@unicyb.kiev.ua

140



Proceedings of the 4th Conference of Mathematical Society of Moldova

CMSM4’2017, June 28-July 2, 2017, Chisinau, Republic of Moldova

Asymptotics of isoperimetric functions of groups

Alexander Olshanskii

Abstract

The minimal non-decreasing function f : N → N such that
every word w vanishing in a group G = 〈A | R〉 and having
length ||w|| ≤ n is freely equal to a product of at most f(n)
conjugates of relators from R, is called the isoperimetric or Dehn
function of the presentation G = 〈A | R〉. By van Kampen
Lemma, f(n) is equal to the maximal area of minimal diagrams
∆ with ||∂∆|| ≤ n. For finitely presented groups (i.e., both sets A
and R are finite) isoperimetric functions are usually taken up to
equivalence to get rid of the dependence on a finite presentation
for G. To introduce this equivalence ∼, we write f � g if there is
a positive integer c such that f(n) ≤ cg(cn) + cn for any n ∈ N.
Two non-decreasing functions f and g on N are called equivalent
if f � g and g � f. Almost complete description of rapidly
increasing isoperimetric functions (at least biquadratic) and the
connection to the computation complexity of the word problem
in groups can be found in [9], [1] and [7].

In fact, a subquadratic isoperimetric functions of finitely pre-
sented group G is linear up to equivalence, and the isoperimetric
function of G is equaivalent to linear function if and only if the
group G is hyperbolic (see [3, 6.8.M], [5], [2]). The speaker will
discuss the asymptotic behavior of isoperimetric functions close
to quadratic ones. In particular, he will pay attention to his
recent results.
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Factorizations in the matrix ring and in its

subrings of the block matrices

Vasyl’ Petrychkovych, Nataliia Dzhaliuk

Abstract

The factorizations in the ring of the matrices over an integral
domain of finitely generated principal ideals are described. We
establish the conditions under which the factorizations of the
block matrices in the matrix ring up to the association are the
factorizations in its subrings of the block triangular and the block
diagonal matrices.

Keywords: matrix ring, block matrix, factorization.

1 Introduction

Let R be an integral domain of finitely generated principal ideals. We
will denote the ring of n× n matrices over R by M(n,R), the subring
of the block upper triangular matrices T = triang(T11, . . . , Tkk) =
[Tij ]

k
1
, Tij = 0 if i > j, Tii ∈ M(ni, R) by BT (n1, . . . , nk, R), the

subring of the block diagonal matrices D = diag(D11, . . . ,Dkk), Dii ∈

M(ni, R) by BD(n1, . . . , nk, R).
We describe the factorizations of the matrices in the ring M(n,R)

and in its subrings BT (n1, . . . , nk, R) and BD(n1, . . . , nk, R). We es-
tablish the conditions under which the factorization of the matrix
T ∈ BT (n1, . . . , nk, R) in the ring M(n,R) up to the association is
the factorization in the ring BT (n1, . . . , nk, R). There is also given
a uniqueness criterion up to the association of such factorizations.
In similar fashion, for the block diagonal matrices D from the ring
BD(n1, . . . , nk, R).
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We should note that the block matrices are used in different applied
problems [1].

It is known the method of the factorization of the matrices over the
polynomial rings, that is the decomposition of the polynomial matri-
ces into a product of the regular factors [2], [3], [4]. The polynomial
matrices and their factorizations have been used in the theory of ma-
trix and differential equations, the theory of operator pencils and in
other applied problems. In [5], it has been formulated the problem of
the description up to the association of the matrix factorizations over
the principal ideals rings and it has been established the conditions
for uniqueness of such factorizations. The factorizations of the block
matrices over the polynomial ring have been considered in [6] and over
the principal ideals rings in [7].

2 Factorizations of the block matrices

Further, we will suppose that the matrix T = triang(T11, . . . , Tkk), Tii ∈
M(ni, R), i = 1, . . . , k from the ring BT (n1, . . . , nk, R) is nonsingular.
Theorem 1. Let the diagonal blocks Tii, i = 1, . . . , k, of the matrix

T have the factorizations of the form

Tii = BiiCii, Bii, Cii ∈M(ni, R) i = 1, . . . , k. (1)

Then there exists a unique up to the association the factorization of the

matrix T in the ring BT (n1, . . . , nk, R), that is

T = triang(B11, . . . , Bkk)triang(C11, . . . , Ckk), (2)

if and only if (detBss,detCs+t,s+t) = 1 for all s = 1, . . . , k−1, t =
1, . . . , k − s.
Theorem 2. Let the determinants of the diagonal blocks Tii of the

matrix T have the factorizations

detTii = ϕiψi, ϕ =

k∏

i=1

ϕi, ψ =

k∏

i=1

ψi.

1. If at least one of the following conditions hold:
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(i) (
∏s

i=1
ϕi, ψs+1) = 1, and ((ϕ,ψ), dTn−1

) = 1, s = 1, . . . , k − 1,

(ii) (detTii, (ϕ,ψ)) = 1, i = 1, . . . , k − 1,

there exists the factorization T = BC of the matrix T in the

ring M(n,R), that is B,C ∈ M(n,R), detB = ϕ, detC = ψ.
Each such factorization of the matrix T in the ring M(n,R) is

associated to the factorization T = B̃C̃ of the matrix T in the

ring BT (n1, . . . , nk, R), where B̃ = BV = triang(B̃11, . . . , B̃kk), C̃ =
V −1C = triang(C̃11, . . . , C̃kk), V ∈ GL(n,R), det B̃ii = ϕi, det C̃ii =
ψi, i = 1, . . . , k.

2. The matrix T has the unique up to the association factorization

T = triang(B11, . . . , Bkk)triang(C11, . . . , Ckk), detBii = ϕi,detCii =
ψi in the ring BT (n1, . . . , nk, R) if and only if the following conditions

hold:

(i) ((ϕi, ψi), d
Tii

ni−1
) = 1, i = 1, . . . , k,

(ii) (ϕs, ψs+t) = 1 s = 1, . . . , k − 1, t = 1, . . . , k − s.

Theorem 3. Let D ∈ BD(n1, . . . , nk, R), that is D =
diag(D11, . . . ,Dkk), Dii ∈ M(ni, R), i = 1, . . . , k, be a nonsingu-

lar matrix. Let the determinants of its diagonal blocks Dii have the

factorizations:

detDii = ϕiψi, ϕ =

k∏

i=1

ϕi, ψ =

k∏

i=1

ψi, i = 1, . . . , k.

If ((detDii,detDjj), (ϕ,ψ)) = 1, i, j = 1, . . . , k, i 6= j, then there

exists the factorization D = BC, B,C ∈ M(n,R), detB =
ϕ, detC = ψ, of the matrix D in the ring M(n,R). Each of

such factorization of the matrix D in the ring M(n,R) is as-

sociated to the factorization D = B̃C̃ of the matrix D in the

ring BD(n1, . . . , nk, R), where B̃ = BV = diag(B̃11, . . . , B̃kk),
C̃ = V −1C = diag(C̃11, . . . , C̃kk), V ∈ GL(n,R), B̃ii, C̃ii ∈ M(ni, R),
det B̃ii = ϕi, det C̃ii = ψi, i = 1, . . . , k.

The factorizations of the block matrices are constructed from the
solutions of the system of the linear matrix equations.
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DCC on closed ideals in rings

of continuous endomorphisms

of LCA groups

Valeriu Popa

Abstract

We present here a description of LCA groups whose ring of
continuous endomorphisms, endowed with the compact-open to-
pology, satisfies DCC on closed right (respectively, left) ideals.

Keywords: LCA groups, rings of continuous endomor-
phisms, DCC on closed right ideals.

Let L be the class of LCA groups. For X ∈ L, let E(X) denote
the ring of continuous endomorphisms of X, taken with the compact-
open topology. One may ask: For which groups X ∈ L, the ring
E(X) satisfies the descending chain condition (DCC) on different types
of closed ideals. In the following, we present some answers to this
question. Let us fix some notations. Given X ∈ L, we denote by d(X)
the maximal divisible subgroup of X, and by m(X) the smallest closed
subgroup K of X such that the quotient group X/K is torsion-free. If
X is topologically torsion, S(X) stands for the the set of those p ∈ P

for which the topological p-primary component Xp 6= {0}. If n ∈ N and
A ⊂ X, then X[n] = {x ∈ X | nx = 0}, nX = {nx | x ∈ X}, and A
stands for the closure of A in X. The groups we shall use frequently are
the cyclic groups Z(pn) of order pn, the rationals Q (all taken discrete),
the character group Q

∗ of Q, the p-adic numbers Qp, and the reals R

(all with their usual topologies), where n ∈ N and p ∈ P.
Theorem 1. Let X be a residual group in L such that the collection
E = {nE(X) | n is a positive integer} has a minimal element with
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respect to set inclusion. Then X is a topological torsion group, and
there exists a finite subset S of S(X) such that the following conditions
hold:

(i) For each p ∈ S(X) \ S, Xp is densely divisible and torsionfree;

(ii) For each p ∈ S, there exists an n(p) ∈ N such that

m(Xp) = Xp[p
n(p)] and d(Xp) = pn(p)Xp.

Theorem 2. Let X be a group in L such that E(X) satisfies DCC
on topologically principal ideals. Then X = U ⊕ V ⊕ W ⊕ Y, where
U ∼= R

d for some d ∈ N, V ∼= Q
(µ) and W ∼= (Q∗)ν for some cardinal

numbers µ and ν, and Y is a topological torsion group in L satisfying
the following conditions:

(i) S(Y ) is finite;

(ii) for each p ∈ S(Y ), there exists n(p) ∈ N such that

m(Yp) = Y [pn(p)] and d(Yp) = pn(p)Yp.

Theorem 3. Let X ∈ L. The following statements are equivalent:

(i) E(X) satisfies both ACC and DCC on closed right (respectively,
left) ideals.

(ii) E(X) satisfies DCC on closed right (respectively, left) ideals.

(iii) E(X) satisfies DCC on topologically principal right (respectively,
left) ideals.

(iv) X ∼= R
d×Q

n×(Q∗)m×
∏

p∈S1
Q

l(p)
p ×

∏
p∈S2

∏k(p)
i=0

Z(pri(p)), where
S1, S2 are finite subsets of P, and d, n,m, the k(p)’s, the ri(p)’s
and the l(p)’s are natural numbers.
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Local nearrings of order 243

I. Iu. Raievska, M. Iu. Raievska, Ya. P. Sysak

Abstract

All local nearrings on 2-generated groups of order 243 are
classified.

Keywords: local nearring, 2-generated group, additive
group.

In this paper the concept “nearring” means a left distributive ne-
arring with an identity. Basic definitions and many results concerning
nearrings can be for instance found in Pilz’s book [1].

A nearring with identity is called local if the set of all its non-
invertible elements is a subgroup of its additive group. The list of all
local nearrings of order at most 31 can be extracted from the package
“Sonata” [2] of the computer system algebra GAP [3].

We observe also that there exist 15 non-isomorphic groups of order
81 = 34 from which 9 are the additive groups of local nearrings [4].
The following theorem describes 2-generated groups of order 243 = 35

with this property. In particular, among 29 non-isomorphic 2-generated
groups of this order only 10 are these additive groups.

Let G be i-th group of order n in the SmallGroups library of GAP.
We write IdGroup(G) = [n, i] and denote by Cn and Dn the cyclic and
the dihedral group of order n. Furthermore, Sn means the symmetric
group of degree n.

Theorem 1. Let R be a local nearring of order 243, R∗ the multiplica-
tive group of R and L the additive subgroup of non-invertible elements
of the additive group R+ of R. If R+ is 2-generated, then the pair of
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R+ and L is one of the following:

[243, 2] (C9 × C3)⋊ C9 and [81, 11] C9 × C3 × C3;
[243, 10] C27 × C9 and [81, 2] C9 × C9;
[243, 11] C27 ⋊ C9 and [81, 2] C9 × C9;
[243, 12] (C27 × C3)⋊ C3 and [81, 11] C9 × C3 × C3;
[243, 13] ((C9 × C3)⋊ C3)⋊ C3 and [81, 15] C3 × C3 × C3 × C3;
[243, 14] (C9 × C3)⋊ C9 and [81, 11] C9 × C3 × C3;
[243, 15] (C9 × C3)⋊ C9 and [81, 11] C9 × C3 × C3;
[243, 16] (C27 ⋊ C3)⋊ C3 and [81, 11] C9 × C3 × C3;
[243, 23] C81 × C3 and [81, 5] C27 × C3;
[243, 24] C81 ⋊ C3 and [81, 5] C27 × C3.

The following table contains the numbers of all non-isomorphic local
nearrings with given additive and multiplicative groups.

Theorem 2. Let n(G) be the number of all non-isomorphic local ne-
arrings R whose additive group R+ is isomorphic to the group G. If
n(R∗) is the number of these nearrings for which IdGroup(R∗) is fixed,
then the following holds.

IdGroup(G) IdGroup(R∗) StructureDescription(R∗) n(R∗)
n(G)

[162, 32] C3 × C3 ×D18 12879
[162, 33] C3 × C9 × S3 3351

[243, 2] [162, 35] ((C3 × C3)⋊ C3)× S3 87
119629 [162, 36] C3 × ((C9 ⋊ C3)⋊ C2) 96472

[162, 37] (C9 ⋊ C3)× S3 6810
[162, 51] C3 × C3 × C3 × S3 30
[162, 3] C9 ×D18 477
[162, 6] (C9 ⋊ C9)⋊ C2 811
[162, 23] C18 × C9 21372
[162, 25] C2 × (C9 ⋊ C9) 96531

[243, 10] [162, 30] C2 × ((C9 × C3)⋊ C3) 36
119298 [162, 31] C2 × (C3.((C3 × C3)⋊ C3) =

= (C3 × C3).(C3 × C3)) 27
[162, 47] C18 × C3 × C3 6
[162, 49] C6 × (C9 ⋊ C3) 6
[162, 50] C2 × ((C9 × C3)⋊ C3) 32
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IdGroup(G) IdGroup(R∗) StructureDescription(R∗) n(G)
n(G)

[243, 11] [162, 3] C9 ×D18 477
1288 [162, 6] (C9 ⋊ C9)⋊ C2 811

[243, 12] [162, 33] C3 × C9 × S3 10306
29989 [162, 37] (C9 ⋊ C3)× S3 19683

[162, 32] C3 × C3 ×D18 2430
[162, 33] C3 × C9 × S3 90
[162, 34] C3 × (((C3 × C3)⋊ C3)⋊ C2) 81811

[243, 13] [162, 35] ((C3 × C3)⋊ C3)× S3 6723
139672 [162, 36] C3 × ((C9 ⋊ C3)⋊ C2) 32076

[162, 37] (C9 ⋊ C3)× S3 342
[162, 51] C3 × C3 × C3 × S3 3321
[162, 52] C3 × C3 × ((C3 × C3)⋊ C2) 12879
[162, 32] C3 × C3 ×D18 12393

[243, 14] [162, 33] C3 × C9 × S3 3321
115020 [162, 36] C3 × ((C9 ⋊ C3)⋊ C2) 92583

[162, 37] (C9 ⋊ C3)× S3 6723
[162, 32] C3 × C3 ×D18 11961
[162, 33] C3 × C9 × S3 3432

[243, 15] [162, 34] C3 × (((C3 × C3)⋊ C3)⋊ C2) 5832
117783 [162, 36] C3 × ((C9 ⋊ C3)⋊ C2) 89127

[162, 37] (C9 ⋊ C3)× S3 6702
[162, 52] C3 × C3 × ((C3 × C3)⋊ C2) 729

[243, 16] [162, 33] C3 × C9 × S3 19683
59049 [162, 37] (C9 ⋊ C3)× S3 39366

[243, 23] [162, 8] C27 × S3 28
3349 [162, 26] C54 × C3 1134

[162, 27] C2 × (C27 ⋊ C3) 2187
[243, 24] [162, 8] C27 × S3 28

28
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On existential expressibility of formulas in the

simplest non-trivial super-intuitionistic

propositional logic

Andrei Rusu, Elena Rusu

Abstract

We consider the well-known 3-valued extension of the intui-
tionistic propositional logic [1] and examine the conditions for o
system of formulas to be complete with respect to existential ex-
pressibility of formulas considered earlier by A. V. Kuznetsov [2].
It was established that there exists a relative simple algorithm to
determine whether a system of formulas is complete relative to
existential expressibility of formulas in the 3-valued extension of
the intuitionistic propositional logic.

Keywords: intuitionistic logic, existential expressibility,
super-intuitionistic logic.

1 Introduction

In 1921 E. Post analysed the possibility get a formula from other for-
mulas by means of superpositions [3, 4] and proved that there are a
numerable collection of closed with respect to superpositions classes
of boolean functions, among which only 5 of them are maximal with
respect to inclusion. A. V. Kuznetsov have generalized the notion of
superposion of functions to the case of formulas and put into consi-
deration the notion of parametric expressibility as well as existential
expressibility of a formula via a system of formulas in a given logic [2]
and proved there finitely many precomplete with respect to parametric
expressibility classes of formulas in the general 2-valued and 3-valued
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logics. It was stated in [2] that together with parametric expressibi-
lity it is also interesting to investigate the existential expressibility of
formulas. The main result of the present paper is the theorem that sta-
tes that there is an algorithm which allows to determine whether any
formula of the simplest non-trivial super-intuitionistic logic L could be
existentially expressible via a given system of formulas Σ in L.

2 Definitions and notations

Intuitionistic propositional logic Int [5]. The calculus of the
propositional intuitionistic logic Int is based on formulas built as
usual from propositional variables p, q, r, p1, qi, rj , . . . , logical connecti-
ves &,∨,⊃,¬ and auxiliary symbols of left and right parentheses ( and
). Axioms of Int are the formulas: p ⊃ (q ⊃ p), (p ⊃ q) ⊃ ((p ⊃

(q ⊃ r)) ⊃ (p ⊃ r), p ⊃ (q ⊃ (p & q)), p ⊃ (p ∨ q), p ⊃ (q ∨ p),
(p ∨ q) ⊃ p, (p ∨ q) ⊃ q, (p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r)),
(p ⊃ q) ⊃ ((p ⊃ ¬q) ⊃ ¬p), ¬p ⊃ (p ⊃ q). and the well-known rules
of inference: modus ponens, and substitution. The intuitionistic logic
Int of the above calculus is defined as usual as the set of formulas
deductible in that calculus.

Any set of formulas L containing Int and closed with respect to the
rules of inference is said to be an extention of Int, also being known
as super-intuitionistic logic or intermediate logic [6]. We consider the
super-intuitionistic logic L3 of the second slice defined by two additional
axioms [6]:

Z = (p ⊃ q) ∨ (q ⊃ p),

P2 = ((r ⊃ [((q ⊃ p) ⊃ q) ⊃ q]) ⊃ r) ⊃ r

Existential expressibility [2]. Suppose in the logic L we can
define the equivalence of two formulas. The formula F is said to be
(expricitly) expressible via a system of formulas Σ in the logic L if F can
be obtained from variables and formulas Σ using two rules: a) the rule
of weak substitution, which allows to pass from two formulas, say A

and B to the result of substitution of one of them in another in place of
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any variable A,B
A[B]

(where we denote by A[B] the thought substitution);

b) if we already get formula A and we know A is equivalent in L to B,
then we have also formula B.

The formula F is said to be existentially expressible in the logic
L via the system of formulas Σ if there exists variables q1, . . . , qs, q

not occurring in F , formulas D1, . . . ,Ds and formulas B1, . . . , Bm and
C1, . . . , Cm such that Bj1, . . . , Bjm and Cj1, . . . , Cjm, j = 1, . . . , k, are
explicitly expressible in L via formulas of Σ and the following first-order
formulas are true:

(F = q) =⇒(
k
∨
j=1

m
∧
i=1

(Bji = Cji))[q1/D1] . . . [qs/Ds],

(
k
∨
j=1

m
∧
i=1

(Bji = Cji)) =⇒ (F = q)

The system of formulas Σ is said to be complete with respect to
existential expressibility in the logic L if any formula of the calculus of
L is existentially expressible via formulas of Σ.

3 Main result

One of the main questions regarding existential expressibility of formu-
las is whether there is an algorithm for detecting in the given logic L

able to detct the completeness with respect to existential expressibility
of classes of formulas in L.

Theorem 1. There is an algorithm for which is able to detect whet-
her a given system formulas Σ is complete with respect to existential
expressibility of formulas in the simplest three-valued extension of the
intuitionistic logic.

4 Conclusion

This is the first step in establishing the conditions for an arbitrary
system of formulas Σ to be complete with respect to existential expres-
sibility in the intuitionistic logic of propositions.
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Reversible Automata on Finite Quasigroups

Volodymyr V. Skobelev, Volodymyr G. Skobelev

Abstract

In the given paper families of semi-automata, Mealy and
Moore automata defined on finite abstract quasigroups, and on
T-quasigroups are introduced and analyzed. Some applications of
proposed models for resolving problems of information protection
are discussed briefly.

Keywords: automata, quasigroups, T-quasigroups, hash-
functions.

1 Introduction

Within the last two decades there is steady transition from combi-
natorial models to algebraic ones for resolving different problems of
information processing, in particular, of information protection. In the
majority of researches finite associative algebraic systems have been
used. However, it seems very promising to use non-associative alge-
braic systems for resolving information protection problems. The main
argument in favor of this statement is based on much more high com-
plexity of resolving identification problems in non-associative systems
in comparison with associative ones.

Among non-associative algebraic systems a specific place is held by
quasigroups, which have been applied successfully for resolving model
cryptography problems [1]. For this reason research of reversible auto-
mata models over finite quasigroups is important from theoretical and
application-oriented point of view. In what follows we deal only with
finite quasigroups, and the word ”finite” is omitted.
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2 Semi-Automata on Quasigroups

A semi-automaton is a triple M = (Q,X, δ), where Q is finite set of
states, X is finite input alphabet, and δ : Q×X → Q is the transition
mapping.

With any given quasigroup Q = (Q, ◦) the family of semi-automata
MQ = {M⋄ = (Q,Q, ⋄)}⋄∈P

Q

, where PQ = {◦, ◦(r), ◦(l), ◦(rl), ◦(lr), ◦(s)}
is the set of parastrophs of the quasigroup Q, can be associated. The
following theorem holds.

Theorem 1. For any quasigroup Q = (Q, ◦) the transition diagram of
each semi-automaton M⋄ ∈ MQ is labeled directed complete |Q|-graph
with the loop at each vertex.

Application-oriented meaning of this theorem is as follows.
For any semi-automaton M⋄ ∈ MQ, any its state q ∈ Q, and any

input string p = x1 . . . xn ∈ Qn (n ∈ N) we set

q ⋄ p = ((. . . ((q ⋄ x1) ⋄ x2) ⋄ . . . ) ⋄ xn−1) ⋄ xn.

Let P
(1)

M
⋄
,q,n(q

′) (M⋄ ∈ MQ; q, q
′ ∈ Q;n ∈ N) be probability that

randomly chosen input string p ∈ Qn is a solution of the equation

q ⋄ p = q′, and P
(2)

M
⋄
,q,n (M⋄ ∈ MQ; q ∈ Q;n ∈ N) be probability that

two different input strings p and p′ randomly chosen from the set Qn

form a solution of the equation q ⋄ p = q ⋄ p′. Applying approach
proposed in [2], we get the following corollary of theorem 1.

Corollary 1. For any quasigroup Q = (Q, ◦) the following equalities
hold

P
(1)

M
⋄
,q,n(q

′) = |Q|−1 (M⋄ ∈ MQ; q, q
′ ∈ Q;n ∈ N),

P
(2)

M
⋄
,q,n = |Q|−1

(

1−
|Q| − 1

|Q|n − 1

)

(M⋄ ∈ MQ; q ∈ Q;n ∈ N).

This result proves that any semi-automaton M⋄ ∈ MQ can be used
as mathematical model for some family of computationally secured
iterative hash-functions.
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3 Automata on Quasigroups

With any given pair of quasigroups Qi = (Q, ◦i) (i = 1, 2) the family
of Mealy automata AQ1,Q2

= {A⋄1,⋄2 = (Q,Q,Q, ⋄1, ⋄2)}⋄1∈PQ1
,⋄2∈PQ2

can be associated. The following theorem holds.

Theorem 2. For any given pair of quasigroups Qi = (Q, ◦i) (i = 1, 2)
the family AQ1,Q2

consists of reduced reversible automata.

Corollary 2. For any automaton A⋄1,⋄2 ∈ AQ1,Q2
each input symbol

is a distinguishing sequence.

With any given quasigroup Q = (Q, ◦) and symmetric group SQ the
family of Moore automata AQ,SQ

= {A⋄,f = (Q,Q,Q, ⋄, f)}⋄∈P
Q
,f∈SQ

can be associated. The following theorem holds.

Theorem 3. For any given quasigroup Q = (Q, ◦) and symmetric
group SQ the family AQ,SQ

consists of reduced reversible automata.

Corollary 3. For any automaton A⋄,f ∈ AQ,SQ
each input symbol is

a distinguishing sequence.

Application-oriented meaning of theorems 2 and 3 is that any au-
tomaton A ∈ AQ1,Q2

∪ AQ,SQ
can be used as mathematical model for

some stream cipher.

4 Automata on T-Quasigroups

A quasigroup Q = (Q, ◦) is a T-quasigroup if there exist some abelian
group G = (Q,+), an ordered pair of its automorphisms (ϕ,ψ), and
some fixed element c ∈ Q, such that identity a◦b = ϕ(a)+ψ(b)+c holds
for all a, b ∈ Q. Thus, any T-quasigroup Q = (Q, ◦) can be presented
as the system S = (Q,+, ϕ, ψ, c).

Applying fundamental theorem of finite abelian groups, we can pre-
sent abelian group G = (Q,+) (|Q| = pr1

1
. . . prtt ) as the direct sum

of cyclic subgroups of prime-power order G ∼=
t⊕

i=1

(
kj⊕

j=1

Z
p
cij
j

)

, where
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1 ≤ ci1 ≤ · · · ≤ ciki , and ri = ci1 + · · · + ciki for all i = 1, . . . , t. This
presentation forms the strong base for design structured models of semi-
automata and reversible automata defined on finite T-quasigroups.

5 Conclusion

It has been illustrated that proposed families of semi-automata, Mealy
and Moore automata, defined on finite quasigroups, can be used as
mathematical models for resolving problems of information protection.
Thus, it is actual detailed analysis of computational security and re-
liability of proposed models for different specific finite T-quasigroups.
This is the main trend for future research.
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On a generalization of the inner mapping group

Parascovia Syrbu

Abstract

We consider the group GM(Q, ·), generated by all left, right
and middle translations of a loop (Q, ·). The generalized inner
mapping group J consists of all mappings α ∈ GM(Q, ·), such
that α(e) = e, where e is the unit of (Q, ·). In the present note
we give a set of mappings which generates the group J .

Keywords: loop, generalized multiplication group, inner
mapping, inner mapping group.

1 Introduction

Let (Q, ·) be a quasigroup, h ∈ Q and letM(Q, ·) =< Rx, Ly|x, y ∈ Q >
be the multiplication group of (Q, ·), where Rx(u) = u · x,Ly(u) =
y · u,∀u ∈ Q. A mapping α ∈ M(Q, ·) is called an inner mapping,
with respect to h, if α(h) = h. The group Ih of all inner mappings,
with respect to h, is called the inner mapping group of (Q, ·), with
respect to h. If h1, h2 ∈ Q, then the inner mapping groups Ih1

and
Ih2

are isomorphic. It is well known the role of Ih in the study of
normality: a subquasigroup H of a quasigroup (Q, ·) is normal if and
only if Ih(H) = H, where h is an arbitrary element of H. A set of
generators for the inner mapping group Ih of a quasigroup was given
by Belousov [1].

If (Q, ·) is a loop and h = e is its unit, then Ie is called the in-
ner mapping group of (Q, ·). The multiplication group and the inner
mapping group of a loop are important tools when studying the pro-
perties and the structure of the loops. These tools were introduced by
Bruck, who used them to investigate centrally nilpotent loops. The

c©2017 by Parascovia Syrbu
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inner mapping group of loops is studied in a wide series of works, by
Bruck, Baer, Garrison, Medoch, Niemenmaa, Kepka, Nagy, Drapal,
Vojtechovsky, Csorgo, Gagola and others (see, for example, [1-3]).

In the present note we consider the group GM(Q, ·), generated by
all left, right and middle translations of a loop (Q, ·), and give a set of
mappings which generates the stabilizer of the neutral element of this
loop in GM(Q, ·).

2 The generalized multiplication group of a

loop and the inner mapping group

A set of generators of the inner mapping group of a quasigroup (with
respect to some element) was given by Belousov [1].

Theorem 1.[1] If (Q, ·) is a quasigroup and h ∈ Q, than the set
{Rx,y, Lx,y, Tx|x, y ∈ Q} generates the inner mapping group Ih, where
Rx,y = R−1

x∗yRyRx, Lx,y = L−1
x◦yLxLy, Tx = L−1

σ(x)
Rx, (∗) = (·)(Lh,ε,Lh),

(◦) = (·)(ε,Rh,Rh), σ = R−1

h Lh.

For a loop (Q, ·), we consider the group:
GM(Q, ·) =< Lx, Ry, Iz|x, y, z ∈ Q >,

where Rx(u) = u · x, Ly(u) = y · u, Iz : Q 7→ Q, Iz(u) = u \ z, ∀u ∈ Q,
are the right, left and, respectively, middle translations of (Q, ·).

Let e is the the unit of a loop (Q, ·). Denote the stabilizer of e in
GM(Q, ·) by

J = {α ∈ GM(Q, ·)|α(e) = e}.

The group J is a generalization of the inner mapping group of (Q, ·).

Theorem 2.[4] If (Q, ·) and (Q, ◦) are two isostrophic loops then
GM(Q, ·) ∼= GM(Q, ◦)

Let (Q, ·) be a loop. Consider the mappings: Rx,y = R−1
x·yRyRx,

Lx,y = L−1
x·yLxLy,Tx = L−1

x Rx,Px,y = R−1
y LxIyIx,P

′

x,y = L−1
x RyI

−1
x I−1

y ,
Vx = I−1

x Rx, Ux = IxRx, for every x, y ∈ Q.

Lemma 1. If (Q, ·) is a loop, then the mappings Rx,y, Lx,y, Tx,
Px,y, P

′

x,y, Vx, Ux belong to its generalized inner mapping group J .
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Proof. It is well known (and easy to verify) that Rx,y(e) =
e, Lx,y(e) = e, and Tx(e) = e, where e is the unit of the loop (Q, ·).
For the remaining four mappings we have:

Vx(e) = I−1
x Rx(e) = I−1

x (x) = x/x = e; Ux(e) = IxRx(e) = Ix(x) =
x \ x = e,∀x ∈ Q;

x = e\x ⇔ x \ y = (e\x) \ y ⇔ x · [(e\x) \ y] = y ⇔ LxIyIx(e) =
Ry(e) ⇔ R−1

y LxIyIx(e) = e ⇔ Px,y(e) = e,∀x, y ∈ Q;

y = y/e ⇔ x/y = x/(y/e) ⇔ [x/(y/e)] · y = x ⇔ RyI
−1
x I−1

y (e) =
Lx(e) ⇔ L−1

x RyI
−1
x I−1

y (e) = e ⇔ P ′

x,y(e) = e,∀x, y ∈ Q.

Theorem 3. The generalized inner mapping group J of a loop (Q, ·) is
generated by the set of mappings {Rx,y, Lx,y, Tx, Px,y, P

′

x,y, Vx, Ux|x, y ∈

Q}. Proof. Denote F =< Rx,y, Lx,y, Tx, Px,y, P
′

x,y, Vx, Ux|x, y ∈ Q > .
According to Lemma 1, all generators of F belong to J , hence F ⊆ J.

Every mapping α ∈ J is a products of a finite number of translations
(left, right, middle) or their inverses: Sε1

a1
Sε2
a2

. . . Sεn
an , where ai ∈ Q, and

εi = 1 or −1, ∀i = 1, 2, . . . , n. The number n is called the length of
α. We may consider that Sεn

an
= Rx, for some x ∈ Q, otherwise we

may add the product R−1
x Rx to the right side of α. The proof of the

inclusion J ⊆ F is similar to that of Belousov for Theorem 1, and uses
the mathematical induction by the length n of α.

If n = 1, then α = Rx. So as Rx(e) = e, we get x = e and, for
example, α = L−1

e Re ∈ F. Suppose that every mapping α ∈ J, of length
≤ n, belongs to F.

Let α ∈ J be a mapping of length n. We’ll show that α may be
represented in the form α = α′τ, where α′ is a mapping of length n− 1
and τ ∈ F. Then, using the mathematical induction, we have α′ ∈ F,
hence α = α′τ ∈ F. So as the last factor in the product equal to α
is Rx, we have to consider six possible cases: 1. α = α′′RyRx; 2.
α = α′′LyRx; 3. α = α′′R−1

y Rx; 4. α = α′′L−1
y Rx; 5. α = α′′IyRx; 6.

α = α′′I−1
y Rx, where α′′ ∈ J is a mapping of length n− 2.

1. α = α′′RyRx = α′′Rx·yR
−1
x·yRyRx = α′′Rx·yRx,y ∈ F, so as

α′′Rx·y is a mapping of length n− 1 (we use the inductive assumption)
and Rx,y ∈ F.

2. α = α′′LyRx = α′′LyLxL
−1
x Rx = α′′LyLxTx = α′′Lx·yL

−1
x·yLyLxTx
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= α′′Lx·yLx,yTx ∈ F, so as α′′Lx·y is of length n− 1 and Lx,yTx ∈ F.
3. α = α′′R−1

y Rx = α′′RzR
−1
z R−1

y Rx = α′′Rz(R
−1
x RyRz)

−1 =
α′′RzR

−1
z,y ∈ F, by the inductive assumption, where x = z · y.

4. α = α′′L−1
y Rx = α′′L−1

y LxL
−1
x Rx = α′′L−1

y LxTx =
α′′LzL

−1
z L−1

y LxTx = α′′Lz(L
−1
x LyLz)

−1Tx = α′′Lz(Ly,z)
−1Tx ∈ F,

where x = t · z.
5. α = α′′IyRx = α′′IyIxI

−1
x Rx = α′′IyIxVx = α′′L−1

x RyPx,yVx =
α′′L−1

x LyL
−1
y RyPx,yVx = α′′L−1

x LyTyPx,yVx = α′′LzL
−1
z L−1

x LyTyPx,yVx

= α′′Lz(L
−1
y LxLz)

−1TyPx,yVx = α′′LzL
−1
x,zTyPx,yVx ∈ F, where y = x·z.

6. α = α′′I−1
y Rx = α′′I−1

y I−1
x IxRx = α′′I−1

y I−1
x Ux = α′′R−1

x LyP
′

x,yUx

= α′′R−1
x RyR

−1
y LyP

′

x,yUx = α′′R−1
x RyT

−1
y P ′

x,yUx =
α′′RzR

−1
z R−1

x RyT
−1
y P ′

x,yUx = α′′Rz(R
−1
y RxRz)

−1T−1
y P ′

x,yUx =
α′′Rz(Rz,x)

−1T−1
y P ′

x,yUx ∈ F,
where y = z · x, so J ⊆ F, which implies J = F.
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About one special inversion matrix of

non-symmetric n-IP -loop

Leonid Ursu

Abstract

It is known that n-IP -quasigroups have more than one inver-
sion matrix [1]. It is proved that one of these inversion matrices
in the class of non-symmetric n-IP -loops is so-called matrix [Iij ]
of permutations, any of which has order two and fixes the unit
element of the loop.

Keywords: quasigroup, loop, n-IP -quasigroup, n-IP -loop,
inversion permutation, inversion matrix, isostrophism.

1 Main concepts and definitions

A quasigroup Q(A) of arity n, n ≥ 2, is called an n-IP -quasigroup
if there exist permutations νij, i, j ∈ 1, n of the set Q, such that the
following identities are true:

A({νijxj}
i−1

j=1
, A(xn1 ), {νijxj}

n
j=i+1) = xi, (1)

for all xn
1
∈ Qn, where νii = νi n+1 = ε. Here ε denotes the identity

permutation of the set Q [1]. See [1] for more information on n-ary
quasigroups.

The matrix

[
νij

]
=







ε ν12 ν13 . . . ν1n ε
ν21 ε ν23 . . . ν2n ε
. . . . . . . . . . . . . . . . . . . . . . . . . . .
νn1 νn2 νn3 . . . ε ε






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is called an inversion matrix for a n-IP -quasigroup, the permutations
νi,j are called inversion permutations. Any i-th row of an inversion
matrix is called i-th inversion system for a n-IP -quasigroup.

The least common multiple (LCM) of orders of permutations of i-th
inversion system is called the order of this system. The least common
multiple (LCM) of orders of all inversion systems is called the order of
inversion matrix.

The operation

B(xn1 ) = α−1

n+1
A(α1x1, . . . , αnxn),

for all xn
1
∈ Q, where αn+1

1
are permutations of the set Q, is called

an isotope of the n-ary quasigroup Q(A). If A = B, then we have an
autotopy of the n-ary quasigroup Q(A).

Recall that an n-ary quasigroup is an n-ary groupoid Q(A), such
that in the equality A(x1, x2, . . . , xn) = xn+1 any n elements of the set
{x1, x2, . . . , xn, xn+1} uniquely specifies the remaining one [1]. There-
fore we can define a new quasigroup operation

πiA(xi−1

1
, xn+1, x

n
i+1) = xi, (2)

that is called the i-th inverse operation of the operation A.
Let σ be a permutation of a set that consists from (n+1) elements.

The operation
σA(xσnσ1 ) = xσ(n+1)

is called the σ-parastrophe of the operation A. If σ(n + 1) = n + 1,
then we call this parastrophe a main parastrophe.

Isostrophy is a combination of an isotopy T and a parastrophy σ,
i.e., an isostrophic image of an n-ary quasigroup Q(A) is a parastrophic
image of its isotopic image, and it is denoted by A(σ,T ). If A(σ,T ) = A,
then the pair (σ, T ) is called an autostrophy of the n-ary quasigroup
Q(A) [1].

From identity (1) it follows that, for n-ary-IP-quasigroup Q(A),
the expression T 2

i = (ε, ν2i2, ν
2

i3, . . . , ν
2

ii−1
, ε, ν2ii+1

, ν2in, ε) is an autotopy
of the n-ary quasigroup Q(A).
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Therefore
πiA = ATi (3)

and
A(πi,Ti) = A (4)

for all i ∈ 1, n. Any of equalities (3) and (4) defines an n-IP-quasigroup.
Below, for convenience, we denote the operation A by ().
An element e is called a unit of the n-ary operation Q(), if the

following equality is true: (
i−1

e , x,
n−i
e ) = x, for all x ∈ Q and i ∈ 1, n.

n-Ary quasigroups with unit elements are called n-ary loops [1, 2].
Loops of arity n > 2 can have more than one unit element [1]. n-
IP-quasigroups with an least one unit element are called n-IP-loops
[2, 3].

Permutations Iij of the set Q are defined by the equalities

(
i−1

e , x,
j−i−1

e , Iijx,
n−j
e ) = e,

for all x ∈ Q and i, j ∈ 1, n.
If the tuple (ε, ν12, ν13, . . . , ν1n, ε) is the first inversion system of

n-IP-quasigroup Q(), with the inversion matrix [νij ], then the tuple

(ε, ν2n−1

12
, ν2n−1

13
, . . . , ν2n−1

1n , ε),

is also an (first) inversion system, since the tuple (ε, ν2n
12
, ν2n

13
, . . . , ν2n

1n , ε)
is an autotopy of the quasigroup Q(). This is true for other (i =
2, 3, . . . ) inversion systems.

Consider the matrix

[
Iij

]
=







ε I12 I13 . . . I1n ε
I21 ε I23 . . . I2n ε
. . . . . . . . . . . . . . . . . . . . . . . . . .
In1 In2 In3 . . . ε ε







An n-Quasigroup Q(A) is called symmetric, if A(xϕnϕ1 ) = A(xn
1
), for

all ϕ ∈ Sn, where Sn is the symmetric group defined on the set Q,
otherwise it is called non-symmetric [2, 3].
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2 Main results

The first constructed example of an 3-IP-loop have the inversion matrix
[Iij ]. V.D. Belousov proposed the following problem: is it true that any
n-IP-loop has among inversion matrices the matrix [Iij ]?

Lemma. If Q() is a non-symmetric n-IP-loop with the inversion ma-
trix [νij ] and unit e, then any non-identity inversion permutation from
any inversion matrix of even order does not fix the unit element e.

Corollary. If Q() is a non-symmetric n-IP-loop with the inversion
matrix [νij ] and unit e, then any non-identity inversion permutation
from any inversion matrix of odd order fix the unit element e.

Theorem. The matrix [Iij] is one of the inversion matrices in any
non-symmetric n-IP-loop.
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On the lattice of ideals of semirings of

continuous partial real-valued functions

E. M. Vechtomov, E. N. Lubyagina

Abstract

The work is devoted to the general theory of semirings of con-
tinuous functions. We consider semirings CP (X) of continuous
partial functions on topological spaces X with values in the to-
pological field R of real numbers. We study properties of the
lattice IdCP (X) of all ideals of a semiring CP (X). It is proved
that a T1-space X is determined by the lattice IdCP (X).

Keywords: semiring, ideal, lattice, T1-space, field of real
numbers, continuous partial function, definability.

The theory of semirings of continuous functions [8–10] is a logical
extension and development of the classical theory of rings of continuous
real-valued functions [1]. Semirings of continuous partial functions are
described in works [3–7].

Let S be a semiring and X be an arbitrary set. By SPX we denote
the set ∪{SY : Y ⊆ X} of all partial functions from X to S. D(f) is
the domain of a partial function f ∈ SPX .

The set SPX with pointwise operations of addition + and multipli-
cation · of functions such that D(f + g) = D(f · g) = D(f)∩D(g) is a
semiring with an absorbing element ∅ for addition and multiplication.

Let S be a semiring with a unit 1. The idempotents (under multi-
plication) 1A, A ⊆ X : D(1A) = A, 1A(x) = 1 for all x ∈ A, play an
important role in the theory of semirings SPX . In particular, we have
idempotents 1x = 1{x} for x ∈ X, 1X = 1 and 1∅ = ∅. The element 1A
is a unit of semirings SA and SPA. The semiring SPA = 1ASP

X is a
principal ideal of a semiring SPX .
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Let S contains 0. By 0A, where A ⊆ X, we denote a function from
SPX such that D(0A) = A and 0A(x) = 0 for all x ∈ X. We have
1∅ = ∅ = 0∅.

Let S be a topological semiring and X be a topological space. We
get the semiring CP (X,S) = ∪{C(Y, S) : Y ⊆ X} of all continuous
partial S-valued functions on X with pointwise operations of addition
and multiplication defined for any partial functions f and g on their
common domain D(f) ∩D(g).

Let us consider some aspects of the theory of semirings CP (X) =
CP (X,R) of continuous partial R-valued functions on T1–spaces X.

The set IdCP (X) of all ideals of a semiring CP (X) with respect
to the inclusion relation ⊆ forms a lattice in which the greatest lower
bound of ideals is their intersection, and sup(A,B) = A∪B∪ (A+B).
The lattice IdCP (X) is complete one with the smallest element {∅}

and the greatest element CP (X).

Proposition 1. The minimal ideals of a semiring CP (X) are exactly

principal ideals (0x) = 0xCP (X) = {0x,∅} for all points x ∈ X.

Proposition 2. For any topological space X maximal ideals of a se-

miring CP (X) have the form (CP (X) \ C(X)) ∪ M , where M is an

arbitrary maximal ideal of the semiring C(X).

Proposition 3. For any topological space X the lattice IdCP (X) is

modular.

Proposition 4. For any topological space X the lattice IdCP (X) is

a lattice with pseudocomplements. Only elements {∅} and CP (X,S)
have a complement in IdCP (X).

A spaceX is called an F-space if any two disjoint cozero-sets cozf =
X \Z(f) and cozg, f, g ∈ C(X), are separated by a fuction from C(X).
A topological space X is called a hereditary F-space if any subspace of
X is an F-space

Theorem 1. For any topological space X the lattice of all ideals

IdCP (X) is distributive if and only if X is a hereditary F-space.

The space X is called a T1-space if all its one-element subsets are
closed. The following result is related to the topic of definability of
topological spaces [2].
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Theorem 2. Any T1-space X is uniquely determined by the lattice

IdCP (X).

Further we plan to develope the theory of semirings CP (X,S) for
different topological semirings S, in particular for the semifield (with
zero 0) of nonnegative real numbers and the semifield of positive real
numbers.
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Pairing on Lorentz formal modules

Sergei Vostokov, Petr Pital’

Abstract

We show the main properties of this pairing — invariance and
bilinearity that allow to construct the explicit form of generalized
Hilbert symbol for the formal Lorentz groups over the rings of
integers of local field using this pairing.

Keywords: formal modules, Hilbert pairings, explicit formu-
las, local fields.

1 Introduction

One of the classical examples of formal group laws is so called Lorentz
formal group law:

Fl,c(X,Y ) =
X + Y

1 + c2XY
.

Formal laws of a such type are correspondent to the relativity theory:
putting here 1

c
as velocity of light we get the parallel velocity addition

formula.
Also if one consider curves of type Y 2Z = X3 + c2X2Z in Weier-

strass’ parametrisation on projective plane then formal Lorentz groups
Fl,c,O with O = Z[c] will correspond standard geometric point addition
structure on these (algebraic) curves (see [1]).

Next we construct explicit pairing in Cartier series for the formal
Lorentz group (X+Y +XY )/(1+ cXY ) where c is some variety. Such
pairings (Hilbert pairings) are important for construction of formal
modules correspondent to Lorenz modules built over maximal ideal
of ring of integers of local fields (finite extension of p-adic numbers).
Examples of these pairings construction may be found in [2], [3].
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2 Notation

The following notation is used in this paper:

• Let k be a local field, finite extension of Qp, p is odd prime;

• K — finite extension of k with rings of integers OK , containing
ζ — primitive root of identity of degree pn;

• R — multiplicative system of Teichmüller representatives of re-
sidue field K of field K;

• M — maximal ideal of OK ;

• T — inertia field K/Qp, OT — its ring of integers;

• c,X — variables;

• O′

T = OT [c], Mc = XO′

T [[X]] — ideal in O′

T [X].

• Let ϕ be a Frobenius automorphism of T\Qp.

• Define Frobenius operator ∆ in O′

T [X]:

∆(
∑

aic
i) :=

∑
aϕi c

pi, ai ∈ OT ,

∆(
∑

aiX
i) :=

∑
a∆i X

pi, ai ∈ O′

T [c],

• Ec, lc — Artin – Hasse function and Vostokov function.

3 Explicit formulas of pairing

Consider multiplicative group H of series:

H = {Xmθε(X) m ∈ Z, θ ∈ R},

with ε(X) — formal series on R with free term equal to 1.
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Pairing on modules

For formal series α ∈ H, β ∈ Fc(Mc) constructing pairing:

〈 , 〉c : H× Fc(Mc) −→ O′

T mod (pn,P)

α, β −→ resXΦ(α, β)\sl,c,

with

• Φ(α, β) = lc(β) · α
−1dα− l(α)c−1d∆

p
cλc(β)

• d := d
dX

• l(α) = (1− ∆
p
) log(α)

• sl,c = [pn]c(ξn). Here ξn is a root of isogeny [pn]l,c consisting in
K and ξn is a such series that ξ(π) = ξ for some prime π ∈ K.

• P(γ) = γ∆ − γ for γ consisting in O′

T .

One may demonstrate that paring given above is well-defined, bilinear
and invariant. The invariance property we give as

Theorem. For series α(X) ∈ H, β(X) ∈ Fc(Mc), g(Y ) ∈ O′

T [[Y ]],
g(0) = 0 we have:

〈α(X), β(X)〉c = 〈α(g(Y )), β(g(Y ))〉c.

4 Conclusion

In this paper, we constructed the explicit formulas of Hilbert pairing
of Lorentz formal modules and deduced its standard properties.
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Explicit formula for Hilbert symbol of

polynomial formal group over multidimensional

local field

Sergey Vostokov, Vladislav Volkov

Abstract

This paper continues series of work on explicit formulas for
Hilbert symbol of formal groups. We consider simplest possible
situation in which coefficients of the group do not lie in the inertia
subfield of the field in question. In other words coefficient may
contain ramifications. One-dimensional situation was considered
in [1].

Previous results for the multidimensional case include classi-
cal multiplicative group case described in the works [2], [3], case
of Lubin-Tate groups in [4] and case of Honda groups in [5], [6].

Keywords: Hilbert symbol, multidimensional local field, for-
mal groups.

1 Introduction

Construction of explicit formulas for Hilbert symbol is motivated by
their applications in cryptography; because they provide constructive
approach to the class field theory; and due to the fact that residue-type
formulas are proper analogies to the residues of meromorphic function
in the sense that Hilbert reciprocity law is analogue of Cauchy residue
theorem.

We consider case of multidimensional local field K with characte-
ristic different from characteristic of its residue field. This limitation
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is of purely technical nature, other cases can be achieved in a similar
fashion.

Let us introduce following notation:
p > 3 — prime number;
ζ — pmth primitive root of unity;
K — n-dimensional local field, which contains ζ; characteristic of K is
required to be zero, while it’s first residue field should have characte-
ristic p. We denote its ring of integers OK .
c — unit element of the field K;
t1, . . . tn−1, π — system of local parameters of the field K.
T — inertia subfield of K. Detailed definition follows below. We de-
note its ring of integers OT ;
Let’s also denote O = OT {{t1}}{{t2}} . . . {{tn−1}}.
△ — Frobenius automorphism in T/Qp;
tr — trace operator in T/Qp;
M — maximal ideal in OK ;
R — Teichmuller representatives of K(0) in OT ;

Every field K with similar characteristic constraints is in fact finite
extension of the field of formal series k{{t1}}{{t2}} . . . {{tn−1}}, where
k is some finite extension of Qp. Thus we can choose first n − 1 local
parameters to be independent variables.

In one-dimensional case inertia subfield T of the field K is simply
maximal non-ramified subfield in K/Qp. In general case T is chosen as
field of fractions of Witt vectors of the last residue field of K.

Consider polynomial formal group Fc = X + Y + cXY . It defines
formal Zp-module Fc(M) over the ideal M by formal addition. We
denote by [a]c(·) multiplication by a ∈ Zp in this module. The kernel
of the function [pm]c(·) : Fc(M) → Fc(M) is spawned by ξ = c−1(ζ−1).

Now we consider Parshin-Kato isomorphism between K-Milnor
group of multiplicative group K∗ and Galois group of maximal Abelian
extension of K:

Ξ : Kn(K
∗) → Gal(Kab/K) ,

where Kn is nth Milnor group. In one-dimensional case Ξ is simply
an Artin map for the local class field theory. By abuse of notation
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let’s denote through [pm]−1
c (β) any of the solutions of the equation

[pm]c(t) = β, where β ∈ K. Then by analogy to classical Hilbert
symbol one can consider the following modification:

(α, β)c = [pm]−1
c (β)Ξ(α) −Fc

[pm]−1
c (β) ,

where α ∈ Kn(K
∗), β ∈ Fc(M). It’s easy to see that the right side is

well defined and actually belongs to 〈ξ〉c, i. e. kernel of the [pm]c(·)
map.

Our goal is to give constructive approach to (α, β)c, by expressing
it through explicit formula. Basic plan is as follows:

• Determine convenient basis with respect to formal action.

• Explicitly construct a formal pairing analogous to Hilbert symbol
on the series of formal variables (by lifting π → tn).

• Explicitly check that most important properties of the Hilbert
symbol hold for the newly defined pairing.

• Project constructed pairing on the numbers (through tn → π
map) and check that it coincides with classical Hilbert pairing by
comparing on the basis.

For the sake of brevity we skip first step in current description.

2 Formal series

Let’s denote through OT {{t1}} . . . {{tn−1}}[[tn]]1 the set of all se-
ries with lexicographic degree not less than (1, 0, 0, . . . , 0) (latter
degrees are more lexicographically important). We consider follo-
wing formal analogs of K∗ and Fc(M): group Hm = 〈t1〉 × . . . ×
〈tn〉 ×R× (1 +OT {{t1}} . . . {{tn−1}}[[tn]]1) and formal module Hc =
OT {{t1}} . . . {{tn−1}}[[tn]]1.

We also extend operator △ over all formal series from OT {{t1}}
ldots{{tn−1}}((tn)) by stating △ (ti) = tpi .
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Definition 1. Pairing [·, ·]c between group Hm
n and module Hc is

defined as

[·, ·]c : (Hm)
n ×Hc → OT /p

m

α, β 7→ resΦ(α, β) /sc mod pm,

where Φ(α, β) = ℓc(β)D
′

n+1 −

n∑

i=1

1

pn−i
ℓ(αi)D

′

i

D′

i is a specific determinant.

3 Main properties

The main properties of the pairing [·, ·]c that we check are:

• linearity

[{. . . , α1 · α2, . . .}, β]c = [{. . . , α1, . . .}, β]c + [{. . . , α2, . . .}, β]c

[α, β1 +Fc
β2]c = [α, β1]c + [α, β2]c

[α, [r]cβ]c = r · [α, β]c;

• co-symmetry

[{. . . , α1, . . . , α2, . . .}, β]c = −[{. . . , α2, . . . , α1, . . .}, β]c;

• Steinberg property

[{. . . , α, . . . , 1− α, . . .}, β]c = 0;

• Steinberg property

[{. . . , α, . . .}, cp
m
−1α]c = 0;

• independence of the second argument modulo tn → π projection;

• independence of coordinate change.

Most of these properties can be checked by induction on dimension.
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4 Projection

Due to above properties of the pairing [·, ·]c we can induce the pairing
〈·, ·〉c on Kn(Hm)×Hc from it.

We now introduce pairing {·, ·}c on numbers.

Definition 2. Let’s denote

{·, ·} : Kn(K)× Fc(M) → 〈ξ〉c

{α, β}c =
[
tr α, β

〉

c

]

c
(ξ) .

Main theorem now follows from explicit check on the basis and
linearity properties.

Theorem 1. For any elements α ∈ Kn(K) and β ∈ Fc(M) values of

pairings {·, ·}c and (·, ·)c coincide:

{α, β}c = (α, β)c .

5 Conclusion

In this paper the explicit formula for the Hilbert pairing of polynomial
formal group is constructed.
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Free commutative (n-nilpotent) strong

doppelsemigroups

Anatolii Zhuchok

Abstract

We construct a free commutative (n-nilpotent) strong doppel-
semigroup and characterize the least commutative (n-nilpotent)
congruence on a free strong doppelsemigroup.

Keywords: strong doppelsemigroup, free commutative strong
doppelsemigroup, free n-nilpotent strong doppelsemigroup, semi-
group, congruence.

1 Preliminaries

Recall that a doppelsemigroup [1 – 4] is a nonempty set D with two
binary operations ⊣ and ⊢ satisfying the axioms

(x ⊣ y) ⊢ z = x ⊣ (y ⊢ z),

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),

(x ⊣ y) ⊣ z = x ⊣ (y ⊣ z),

(x ⊢ y) ⊢ z = x ⊢ (y ⊢ z)

for all x, y, z ∈ D. A doppelsemigroup (D,⊣,⊢) is called strong [2] if it
satisfies the axiom

x ⊣ (y ⊢ z) = x ⊢ (y ⊣ z)

for all x, y, z ∈ D.

c©2017 by Anatolii Zhuchok
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Recall necessary definitions from [1], [3].
As usual, N denotes the set of all positive integers and N

0 denotes
N with zero. An element 0 of a doppelsemigroup (D,⊣,⊢) is called zero
if x ∗ 0 = 0 = 0 ∗ x for all x ∈ D and ∗ ∈ {⊣,⊢}. A doppelsemigroup
(D,⊣,⊢) with zero 0 is called nilpotent if for some n ∈ N and any
xi ∈ D with 1 ≤ i ≤ n+ 1, and ∗j ∈ {⊣,⊢} with 1 ≤ j ≤ n,

x1 ∗1 x2 ∗2 . . . ∗n xn+1 = 0.

The least such n is called the nilpotency index of (D,⊣,⊢). For
k ∈ N a nilpotent doppelsemigroup of nilpotency index ≤ k is cal-
led k-nilpotent. A doppelsemigroup (D,⊣,⊢) is called commutative if
both semigroups (D,⊣) and (D,⊢) are commutative. The class of all
commutative (n-nilpotent) strong doppelsemigroups forms a subvariety
of the variety of strong doppelsemigroups. A strong doppelsemigroup
which is free in the variety of commutative (n-nilpotent) strong dop-
pelsemigroups will be called a free commutative (n-nilpotent) strong
doppelsemigroup. If ρ is a congruence on a doppelsemigroup (D,⊣,⊢)
such that (D,⊣,⊢) /ρ is a commutative (n-nilpotent) doppelsemigroup,
then ρ is called a commutative (n-nilpotent) congruence.

Let X be an arbitrary nonempty set and ω an arbitrary word in the
alphabet X. The length of ω will be denoted by lω. Let further F [X]
be the free semigroup in the alphabet X. Define operations ⊣ and ⊢

on {(w,m) ∈ F [X] ×N
0 | lw > m} by

(w1,m1) ⊣ (w2,m2) = (w1w2,m1 +m2 + 1), (1.1)

(w1,m1) ⊢ (w2,m2) = (w1w2,m1 +m2). (1.2)

The algebra obtained in this way is denoted by F̃ [X]. According to [2],
F̃ [X] is the free strong doppelsemigroup.

2 Free objects

In this section, we construct a free commutative (n-nilpotent) strong
doppelsemigroup of an arbitrary rank.
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Let X be an arbitrary nonempty set and F ∗[X] the free com-
mutative semigroup in the alphabet X. Define operations ⊣ and ⊢

on C = {(w,m) ∈ F ∗[X] × N
0 | lw > m} by (1.1) and (1.2) for all

(w1,m1), (w2,m2) ∈ C. The algebra (C,⊣,⊢) will be denoted by
F̃ ∗[X].

Theorem 1. F̃ ∗[X] is the free commutative strong doppelsemigroup.

Fix n ∈ N and assume Cn = {(w,m) ∈ F̃ [X] | lw ≤ n}∪{0}. Define
operations ⊣ and ⊢ on Cn by

(w1,m1)⊣ (w2,m2) =

{
(w1w2,m1 +m2 + 1) , lw1w2

≤n,
0, lw1w2

> n,

(w1,m1)⊢ (w2,m2) =

{
(w1w2,m1 +m2) , lw1w2

≤n,
0, lw1w2

> n,

(w1,m1) ∗ 0 = 0 ∗ (w1,m1) = 0 ∗ 0 = 0

for all (w1,m1) , (w2,m2) ∈ Cn\{0} and ∗ ∈ {⊣,⊢}. The algebra
(Cn,⊣,⊢) will be denoted by FNSDn(X).

Theorem 2. FNSDn(X) is the free n-nilpotent strong doppelsemi-

group.

We also consider separately free commutative (n-nilpotent) strong
doppelsemigroups of rank 1 and establish that the automorphism
groups of F̃ ∗[X] and FNSDn(X) are isomorphic to the symmetric
group on X.

3 The least congruences on a free strong dop-

pelsemigroup

In this section, we present the least commutative (n-nilpotent) congru-
ence on a free strong doppelsemigroup.

Let F̃ [X] be the free strong doppelsemigroup. By ⋆ denote the
operation on F ∗[X]. Take (x1 . . . xk, i) , (y1 . . . yh, j) ∈ F̃ [X], where
xp, yq ∈ X for 1 ≤ p ≤ k, 1 ≤ q ≤ h, and define a relation η on F̃ [X]
by
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(x1 . . . xk, i) η (y1 . . . yh, j) if and only if

x1 ⋆ . . . ⋆ xk = y1 ⋆ . . . ⋆ yh, i = j.

For every n ∈ N define a relation ℘(n) on F̃ [X] by

(w1,m1)℘(n) (w2,m2) if and only if

(w1,m1) = (w2,m2) or lw1
> n, lw2

> n.

Theorem 3. Let F̃ [X] be the free strong doppelsemigroup. Then
(i) η is the least commutative congruence on F̃ [X];
(ii) ℘(n) is the least n-nilpotent congruence on F̃ [X].
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The global benavior of geodesics

on hyperbolic manifolds

Vladimir Balcan

Abstract

This paper focuses on the problem of the global behavior of
geodesics on the arbitrary hyperbolic two-manifold, or surfaces.

Keywords: behavior of geodesics, hyperbolic pants, hyper-
bolic surface.

In this work for the first time systematically is described the geo-
metry of behavior of geodesics on hyperbolic manifolds. Geodesics on
smooth surfaces are the straightest and locally shortest curves. My re-
search is to better understand geodesics on a hyperbolic surface. Much
less is known about the behavior of geodesics on hyperbolic surfaces.
The chaotic behavior of geodesics on surface of constant negative cur-
vature and finite volume has been known since Hadamard (1898). Emil
Artin studied the global behavior of geodesics on hyperbolic surfaces
by cleverly encoding geodesics using continued fractions. A major pro-
blem we are interested in is to describe of the geodesics trajectories on
two-dimensional hyperbolic manifold. We want to understand the glo-
bal behavior of geodesics with a given direction. In particular a) when
are geodesics closed? b) when are the dense in the surface? c) quanti-
tatively, how do they wrap around the surface? These questions admit
notably precise answers, as we are going to see. Let us recall some
definitions concerning hyperbolic surfaces and geodesics.

A (closed) hyperbolic surface can be defined either by a Riemannian
metric of constant negative curvature or (thanks to the uniformization
theorem) by a quotient of hyperbolic plane by a discrete group of iso-
metries, isomorphic to the fundamental group of the initial surface,

c©2017 by Vladimir Balcan
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acting properly discontinuously on hyperbolic plane. A standard tool
in the study of compact hyperbolic surfaces is the decomposition into
“pairs of pants” (Y pieces). A hyperbolic surface of signature (g, n) is
an oriented, connected surface of genus g with n boundary components,
called boundary geodesics, which is equipped with a metric of constant
negative curvature. A hyperbolic surface of genus g with k punctures
and n holes and with no boundary is said to be of type (g, n, k). A geo-
desic in a hyperbolic manifold is a locally distance - minimizing curve,
and is said to be simple if it has no transverse self-intersections (there-
fore it is either an embedded copy of R or an embedded circle) and non
simple otherwise. A geodesic on surface M is said to be complete if it is
not strictly contained in any other geodesic, i.e., it is either closed and
smooth, or open and of infinite length in both directions. Complete
geodesics coincide with those which never intersect ∂M . Note that if
M is obtained from a compact surface by removing a finite number of
points to form cusps then a complete open geodesic on M might tend
toward infinity along a cusp. For a hyperbolic surface M some of the
geodesics γ will come back to the point they start and fit in a smooth
way. These are called closed geodesics.

How do geodesics on the hyperbolic surface behave or how can we
determine the behavior of a given geodesic on the hyperbolic surface?
We investigate in detail the global behavior of geodesics on the simplest
hyperbolic surfaces: hyperbolic horn (funnel end), hyperbolic cylinder
and parabolic horn (cusp, horn end), or parabolic cylinder. A hyperbo-
lic horn is a two-dimensional manifold, obtained from the strip between
the two parallel straight lines of the hyperbolic plane by matching the
border lines by shifting (sliding), its axis being parallel to he border
lines and beyond the strip between them. The hyperbolic horn, i.e. the
factor-space H2

+
/Γ, is an (open) half of the hyperbolic cylinder. The

border circumference does not belong to that half and there for the
surface of the hyperbolic horn is incomplete.

On the hyperbolic horn the problem of behavior of a geodesic is
solvable.

The following types of geodesic on hyperbolic horn are identified:
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1) there are no closed geodesics; 2) there is a geodesic of infinite length,

without self-intersections points, and any of its points divides the geo-
desic into two rays: one ray of finite length and another ray of infinite
length; 3) there is an infinite geodesic, without self-intersections points

and any of its points divides it into two congruent rays; 4) there is an

infinite geodesic and it has a finite number k of double self-intersection
points and they are all divisible by 2. The number k of self-intersection
points of an examined geodesic is equal to p. One may define the hy-

perbolic cylinder as a non-compact two-dimensional manifold obtained
from the strip from between the two divergent lines of the hyperbolic
plane by identifying the divergent border lines by shift (sliding), its
axis being a common perpendicular for the said border lines, its shift
being equal to the length of such translation.

On the hyperbolic cylinder C = H2/Γ the geodesic’s behavior pro-
blem is solvable. There are no closed geodesics on the cylinder C (both
simple, different from the narrow geodesic core of cylinder and non-
simple ones). If the geodesic’s image intersects the straight line a, such
a geodesic is a geodesic without self-intersection points, infinite inboth
directions (at both ends).

Let us consider the behavior of geodesic on a parabolic cusp (pa-
rabolic cylinder). We shall call a parabolic horn (cusp) the two-
dimensional manifold obtained from the strip from between the two
parallel lines of the hyperbolic plane by identifying the border lines by
horocyclic rotation determined by these lines. The parabolic cylinder is
a special case (its small end is a cusp, while the “horn” end carriers the
hyperbolic metric). The problem of behavior of a geodesic on a horn
end (cusp) is solvable. The study of universal cover of parabolic cusp
demonstrates that: a) if the arbitrary straight line c does not cross the
obstructing line of the pair determining the horocyclic rotation w and
identified upon that rotation, the image of the said straight line on this
surface(cusp) is isometric to the usual straight line of a hyperbolic sur-
face (simple infinite length, without self-intersection); b) if the image of
the geodesic c on the hyperbolic plane H2 is a straight line intersecting
the said geodesic and if it is different from the obstructing straight line,
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then the geodesic c is infinite in both directions (at both ends) and it
has only a finite number k of double self-intersection points. In the
particular case, both ends of the geodesic can go to the some point at
infinity; c) there are no closed geodesics on the parabolic cusp, because
no translation in the group Γ = < w >.

The study of geodesics on hyperbolic surfaces can be reduced to
the study of curves on a hyperbolic pair of pants. Compact hyperbolic
surfaces can be seen as an elementary pasting of geodesic polygons of
the hyperbolic plane. Conversely, cutting such a surface along disjoint
simple closed geodesics (a partition), one obtains a family of pair of
pants, which in turn can be readily cut to obtain a pair of isometric
right-angled hexagons. Let M be a surface and let P be a pair of
pants. In this paper, we focus on getting the behavior of geodesics
on P . As a direct consequence we get the behavior of geodesics on
any surface M . We do this as follows. First, there is a unique way to
write P as the union of two congruent right-angled hexagons. Take this
decomposition. We examining different types of behaviors exhibited by
geodesics on a given pair of hyperbolic pants and study infinite simple
geodesic rays and complete geodesics. We also allow the degenerate
case in which one or more of the lengths vanish (a generalized pair of
pants).

Main results of the present work are as follows. In the work is gi-
ven a constructive method for solving the problem of the behavior of
geodesic on a arbitrary hyperbolic surfaces of signature (g, n, k), i.e.,
method allowing to answer the question about the structure on the glo-
bal of examined geodesic at its indefinitely extension on both directions.
Such a compressed formulated result can be disclosed as follows. For
this purpose, with the help of proposed practical approach at first are
studied geodesics at the simplest hyperbolic manifolds. Investigation
of behavior of geodesics on the listed above surfaces, allowed finding
answer of assigned task in the most general case.
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Methods of construction of Hausdorff extensions

Laurenţiu Calmuţchi

Abstract

In this paper we study the extensions of Hausdorff spaces
generated by discrete families of open sets.

Keywords: extension, P-space, remainder

1 Introduction

Any space is considered to be a Hausdorff space. We use the termino-
logy from [2]. For any completely regular space X denote by βX the
Stone-Čech compactification of the space X.

Fix a space X. A space eX is an extension of the space X if X is
a dense subspace of eX. If eX is a compact space, then eX is called
a compactification of the space X. The subspace eX \ X is called a
remainder of the extension eX.

Denote by Ext(X) the family of all extensions of the space X. If
X is a completely regular space, then by Extρ(X) we the family of all
completely regular extensions of the space X. Obviously, Extρ(X) ⊂
Ext(X). Let Y,Z ∈ Ext(X) be two extensions of the space X. We
consider that Z ≤ Y if there exists a continuous mapping f : Y −→ Z
such that f(x) = x for each x ∈ X. If Z ≤ Y and Y ≤ Z, then we
say that extensions Y and Z are equivalent and there exists a unique
homeomorphism f : Y −→ Z of Y onto Z such that f(x) = x for each
x ∈ X. We identify the equivalent extensions. In this case Ext(X) and
Extρ are partial ordered sets.

Let τ be an infinite cardinal.

c©2017 by Laurenţiu Calmuţchi
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Denote by O(τ) the set of all ordinal numbers of cardinality < τ .
We consider that τ is the first ordinal number of the cardinality τ .
For any α ∈ O(τ) we put O(α) = {β ∈ O(τ) : β < α}. In this case
O(τ) is well ordered set such that |O(τ)| = τ and |O(α)| < τ for every
α ∈ O(τ).

A point x ∈ X is called a P (τ)-point of the space X if for any
non-empty family γ of open subsets of X for which x ∈ ∩γ and |γ| < τ
there exists an open subset U of X such that x ∈ U ⊂ ∩γ. If any point
of X is a P (τ)-point, then we say that P (τ)-space.

Any point is an ℵ0-point. If τ = ℵ1, then the P (τ)-point is called
the P -point.

2 Hausdorff extensions of discrete spaces

Let τ be an infinite cardinal. Let E be a discrete space of the cardinality
≥ τ .

A family η of subsets of E is called a τ -centered if the family η is
non-empty, ∩η = ∅, ∅ 6∈ η and any subfamily ζ ⊂ η, with cardinality
|ζ| < τ , there exists l ∈ η such that L ⊂ ∩ζ.

Two families η and ζ of subsets of the space E are almost disjoint
if there exist L ∈ η and Z ∈ ζ such that L ∩ Z = ∅.

Any family of subsets is ordered by the following order: L � H if
and only if H ⊂ L. Relatively to this oder some families of sets are
well-ordered.

Proposition 2.1. Let k = |E| ≥ τ and Σ{km : m < τ} = k. Then

on E there exists a set Ω of well-ordered almost disjoint τ -centered
families such that |Ω = kτ and |η| = τ for each η ∈ Ω.

Proof. We fix an element 0 ∈ E. For every α ∈ O(τ) we put
Eα = E and 0α = 0. Then Eτ = Π{Eα : α ∈)(τ)}. For each x =
(xα : α ∈ O(τ)) ∈ Eτ we put φ(x) = sup{0, α : xα 6= 0α}. Obviously,
0 ≤ φ(x) ≤ τ . Let D = {x = (xα : α ∈ O(τ)) ∈ Eτ : φ(x) < τ}.
By construction, |D| = Σ{km : m < τ} = k and |Eτ | = kτ . Since
|E| = |D|, we can fix a one-to-one mapping f : E −→ D. Fix a
point x = (xα : α ∈ O(τ)) ∈ Eτ . For any β ∈)(τ) we put V (x, β) =
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{y = (yα : α ∈ O(τ)) ∈ Eτ : yα = xα for every α ≤ β} and ηx =
{L(x, β) = f−1(D ∩ V (x, β) : β ∈ 0(τ)}. Then Ω = {ηx : x ∈ Eτ} is
the desired set of τ -centered families.

Remark 2.2. Let |E| = k ≥ τ . Since on E there exists k mutually

disjoint subsets of cardinality τ , on E there exists a set Φ of well-

ordered almost disjoint τ -centered families such that |Φ| ≥ k and |η| = τ
for each η ∈ Φ.

Fix a set Φ of almost disjoint τ -centered families of subsets of the
set E. We put eΦE = E ∪ Φ. On eΦE we construct two topologies.

Topology T s(Φ). The basis of the topology T s(Φ) is the family
Bs(Φ) = {UL = L ∪ {η ∈ Φ : H ⊂ L for some H ∈ η} : L ⊂ E}.

Topology Tm(Φ). For each x ∈ E we put Bm(x) = {{x}}. For
every η ∈ Φ we put Bm(η) = {V(η,L) = {η} ∪ L : L ∈ η}. The basis of
the topology Tm(Φ) is the family Bm(Φ) = ∪{Bm(x) : x ∈ eΦE}.

Theorem 2.3. The spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are

Hausdorff zero-dimensional extensions of the discrete space E, and

T s(Φ) ⊂ Tm(Φ)). In particular, (eΦE,T s(Φ)) ≤ (eΦE,Tm(Φ)).

Proof. The inclusion T s(Φ) ⊂ Tm(Φ)) follows from the constructi-
ons of the topologies T s(Φ) and Tm(Φ)). If L ∈ η ∈ Φ, then η ∈ clL.
Hence the set E is dense in the spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)).
If the families η, ζ ∈ Φ are distinct, then there exist L ∈ η and Z ∈ ζ
such that L ∩ Z = ∅. Then UL ∩ UZ = ∅. If L ⊂ E and |L| < τ ,
then L is an open-and-closed subset of the spaces (eΦE,T s(Φ)) and
(eΦE,Tm(Φ)). Hence the topologies T s(Φ) and Tm(Φ) are discrete on
E and the spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are Hausdorff ex-
tensions of the discrete space E. Since the sets UL and V(η,L) are
open-and-closed in the topologies T s(Φ) and Tm(Φ)), respectively, the
spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are zero-dimensional.

Theorem 2.4. The spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are

P (τ)-spaces.

Proof. Fix η ∈ Φ. If ζ ⊂ η and |ζ| < τ , then there exists
L(ζ) ∈ η such that L(ζ) ⊂ ∩ζ. From this fact immediately follows that
(eΦE,Tm(Φ)) is a P (τ)-space. Assume that {Lµ : µ ∈ M} is a family
of subsets of E, |M | < τ , η ∈ Φ and η ∈ ∩{Lµ : µ ∈ M}. Then there
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exists L ∈ η such that L ⊂ ∩{Lµ : µ ∈ M}. Thus η ∈ UL ∈ ∩{ULµ :
µ ∈ M}. From this fact immediately follows that (eΦE,T s(Φ)) is a
P (τ)-space.

Corollary 2.5. If T s(Φ) ⊂ T ⊂ Tm(Φ)), then (eΦE,T ) is a Haus-

dorff extension of the discrete space E, and (eΦE,T s(Φ)) ≤ (eΦE,T ) ≤
(eΦE,Tm(Φ)).

Theorem 2.6. The space (eΩE,T s(Ω)), where Ω is the set of well-

ordered almost disjoint τ -centered families from Proposition 2.1, is a

zero-dimensional paracompact space with character χ(eΩE,T s(Ω)) = τ
and weight Σ{|E|m : m < τ}.

Proof. We consider that E = D. The family B = {{x} : x ∈

D} ∪ {V (x, β) : x ∈ Eτ , β ∈ O(τ)} is a base of the topology T s(Ω).
If U, V ∈ B, then or U ⊂ V , or V ⊂ U , or U ∩ V = ∅. From the
A. V. Arhangel’skii theorem [1] it follows that (eΩE,T s(Ω)) is a zero-
dimensional paracompact space.
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Conditions of Finiteness and Algebraical

Properties of Topological Spaces

Mitrofan M. Choban

Abstract

It is determined that in a Mal’cev F -space any compact subset
is finite.

Keywords: Mal’cev algebra, pseudocompact space, bounded
set, F -space.

1 Introduction

Any space is considered to be a T0-space. An n-ary operation on a
space X is a mapping p : Xn −→ X. If the mapping p is continuous,
then we say that p is a continuous operation. A Mal’cev operation on a
space X is a continuous mappingm : X3 → X such that m(x, x, z) = z
and m(x, y, y) = x for all x, y, z ∈ X. A space is called a Mal’cev space
if it admits a Mal’cev operation. Any Mal’cev space is a Hausdorff
space [4].

An topological universal algebra A is a homogeneous algebra if there
exist two binary derivate operations p, q such that q(x, p(x, y)) = y,
p(x, q(x, y)) = y and p(x, x) = p(y, y) for all x, y ∈ A. A topological
quasigroup admits a structure of a topological homogeneous algebra.
Any topological homogeneous algebra is a regular space.

2 On Spaces with Metrizable Open Images

A space X is called an F -space if X is completely regular and if disjoint
cozero-sets of X are contained in disjoint zero-sets; A space X is called
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an F ′-space if X is completely regular and clXU ∩ clXV = ∅ for every
two disjoint functionally open sets U and V of X (see [7]).

Proposition 2.1. Let f : X −→ Y be a continuous mapping of an

F ′-space X onto a Tychonoff space Y , Z be a subspace of X, f(Z) = Y
and the restriction g = f |Z : Z −→ Y is an open mapping. Then Y is

an F ′-space.

Proposition 2.2. Let Y be an F ′-embedded subspace of an F ′-space

X. Then Y is an F ′-space.

A space is weakly Lindelöf if each of its open covers admits a coun-
table subfamily with dense union.

Proposition 2.3. Let Y be a weakly Lindelöf subspace of a completely

regular space X. Then Y is F ′-embedded in X.

Proposition 2.4. Let Y be a weakly Lindelöf subspace of a completely

regular F ′-space X. Then Y is an F -space.

Proof. The following fact was obtained by many authors (see [5],
Corollary 1.6): Any weakly Lindelöf subspace of an F ′-space is itself
an F ′-space. That fact follows from Propositions 2.2 and 2.3. In [6],
Theorem 2.2, A. Dow has proved that each weakly Lindelöf F ′-space
is an F -space.

Proposition 2.5. Let X be an F ′-space and {gµ : X −→ Yµ : µ ∈M}

be a family of open continuous mappings such that:

- the space Yµ is completely regular and submetrizable for each µ ∈

M ;

- for any infinite subset A ⊆ X the set gµ(A) is infinite for some

µ ∈M .

Then any bounded subset of X is finite.

Corollary 2.1. Let X be a subspace of the topological product Y =

Π{Yµ : µ ∈ M} of completely regular spaces and for any non-empty

countable subset A ⊆ M the restriction of projection pA : X −→ YA ⊆

Π{Yµ : µ ∈ A} of X onto YA = pA(X) is an open mapping. If Y is

F ′-space and any space Yµ is submetrizable, then any bounded subset

of X is finite.
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3 Mal’cev Spaces

Theorem 3.1. If X is a Mal’cev F ′-space, then any compact subset

of X is finite.

Proof. Assume that G is a Mal’cev F ′-space. On G fix the Mal’cev
operation m : G3 −→ G. Fix a compact subset B of G. Assume that
the set B is infinite.

Step 1. We put G0 = B and Gn+1 = m(Gn, Gn, Gn) for each
n ∈ ω. Let G∞ = ∪{Gn : n ∈ ω}. Then G∞ is a Mal’cev space and
the restriction m|G∞ is a Mal’cev operation on G∞.

The set Gn is compact and Gn ⊆ Gn+1 for each n ∈ ω. Thus
the space G∞ is σ-compact. By virtue of Proposition 2.4, G∞ is an
F -space.

Step 2. Since B is an infinite compact subset of G∞, there exists a
continuous function f : G∞ −→ [0, 1] such that the set f(B) is infinite.
Since G∞ is a σ-compact space, there exist a metrizable Mal’cev space
M , a Mal’cev operation µ on M , a continuous mapping g : G∞ −→M
and a continuous mapping h : M −→ [0, 1] such that f = h ◦ g and
g(m(x, y, z)) = µ(g(x), g(y), g(z)) for all x, y, z ∈ G∞ (see [4]). By
construction, the set g(B) is infinite and compact.

Step 3. Let T0 be the topology of the space M . Denote by T
the quotient topology on M . Then (M,T ) is a Mal’cev space, µ is a
Mal’cev operation on (M,T ) and the mapping g of G∞ onto the space
(M,T ) is open (see [2]). Obviously, the restrictions of the topologies
T and T0 on g(B) coincide. Hence for Z = g−1(g(B)) the mapping
ψ : Z −→ g(B) is continuous and open. Since Z is a closed subspace
of a normal σ-compact F -space G∞, Z is an F -space too. By virtue
of Proposition 2.1, g(B) is an infinite compact metrizable F -space, a
contradiction. The proof is complete. For the groups the next result
was proved by A.V. Arhangel’skii [1].

Corollary 3.1. If X is a Mal’cev extremally disconnected space, then

any compact subset of X is finite.

In the case of groups are true more general assertions.

Theorem 3.2. Let H be a closed subgroup of a topological group G and
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X = G/H be the quotient space. Assume that H is a uniform subgroup,

or G is a group with quasi-invariant basis [3]. If a topological space X
is an F ′-space, then any bounded subset of X is finite.
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Abstract

We study the topological hyperalgebras with conditions of
homogeneity.

Keywords: topological universal algebras, totally bounded
algebra, hyperalgebra.

1 Introduction

The theory of hyperalgebras arose at the dawn of modern alge-
bra and has made a significant contribution in the solution of many
important problems, to the development of combinatorics, to study
color algebra and showed its utility in the study of groups, algebraic
functions and rational fractions (see [6, 5, 4, 7].

Denote by Com(X) the set of all non-empty compact subsets of
a space X. A set-valued mapping θ : X −→ Y associate with each
element x of a space X a non-empty subset θ(x) of a space Y . Let
θ : X −→ Y be a set-valued mapping. The mapping θ is upper (lower)
semicontinuous if the set θ−1(H) is closed (open) in X for any closed
(open) subset H of Y . The mapping θ is closed (open) if the set θ(W )
is closed (open) in Y for any closed (open) subset W of X.

Let {En : n ∈ N = {0, 1, 2, 3, ...}} be a sequence of pairwise disjoint
topological spaces. The discrete sum E = ⊕{En : n ∈ N} is the
continuous signature of universal E-polyalgebras. A structure of an E-
hyperalgebra on a non-empty space G is a family {enG : n ∈ N}, where
e0G : En×Gn → G is a single-valued mapping and enG : En×Gn → G
is a set-valued mapping for any n ∈ N, n ≥ 1. A topological universal
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hyperalgebra of the signature E or a topological E-hyperalgebra is a
family {G, enG : n ∈ N}, where G is a non-empty space, e0G : En ×

Gn → G is a single-valued continuous mapping and enG : En×Gn → G
is an uper semicontinuous compact-valued mapping for any n ∈ N,
n ≥ 1. A mapping ϕ : A −→ B of an E-hyperalgebra A into an
E-hyperalgebra B is called: a weakly homomorphism if ϕ is a single-
valued mapping and

ϕ(enA(u, x1, x2, ..., xn) ⊂ enB(u, ϕ(x1), ϕ(x2), ..., ϕ(xn))

for all n ∈ N, u ∈ En and x1, x2, ..., xn ∈ A; a homomorphism if ϕ is a
single-valued mapping and

ϕ(enA(u, x1, x2, ..., xn) = enB(u, ϕ(x1), ϕ(x2), ..., ϕ(xn))

for all n ∈ N, u ∈ En and x1, x2, ..., xn ∈ A; an isomorphism if ϕ
is a one-to-one homomorphism. Topological subhyperalgebras, weakly
topological subhyperalgebras, Cartesian product of E-hyperalgebras
are defined in the traditional way.

2 Polygroups and related algebras

Follows [1, 4, 7, 2, 3] we introduce the following notions.
A hypergroupoid is a hyperalgebra G with the unique binary ope-

ration {·}. The element e is called: an identity of the hypergroupoid G
if e · x = x · e = x for any x ∈ G; a quasi-identity of the hypergroupoid
G if x ∈ e ·x∩x · e for any x ∈ G. Any identity is a quasi-identity. The
quasi-identity is a result of a nulary operation.

A hipergroup is a hyperalgebra G with a unique binary operation
{·}, unary operation {−1} and a quasi-identity e for which: (HG1)
x · (y · z) = (x · y) · z for all x, y, z ∈ G; (HG2) x ∈ e · x ∩ x · e for any
x ∈ G; (HG3) x ∈ y ·z implies y ∈ x ·z−1 and zy−1 ·x for all x, y, z ∈ G.

A hypergroup G is called a polygroup if: (PG1) e is an identity, i.e.
x · e = e · x = x for each x ∈ G; (PG2) x · x−1 = x−1 · x = {e} for each
x ∈ G.
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If G is a topological space and a hypergroup and the operations
{·,−1 } are compact-valued and upper semicontinuous, then G is a to-
pological hypergroup. If G is a topological space and a polygroup and
the operations {·,−1 } are compact-valued and upper semicontinuous,
then G is a topological polygroup. Any topological group is a topolo-
gical polygroup.

A topological homogeneous polyalgebra is a topological hyperal-
gebra G with two binary operation p, q : G2 −→ G for which:
there exists a center c ∈ G such that c = p(x, x) for each x ∈ G;
{x} = p(x, q(x, y)) = q(x, p(x, y) for all x, y ∈ G.

An almost homeomorphism of a space X is a closed compact-valued
uper-semicontinuous mapping g : X −→ X for which there exists a
closed compact-valued uper-semicontinuous mapping f : X −→ X such
that g(f(x)) = f(g(x)) = x for each x ∈ X. In this case we put f = g−1.
Obviously that g = f−1 and (g−1)−1 = g. A space X is called almost
homogeneous if for any two points a, b ∈ X there exists an almost
homeomorphism g : X −→ X such that g(a) = b. Any homogeneous
space is almost homogeneous.

Proposition 3.3. Let (G, p, q) be a topological homogeneous po-
lyalgebra. For any a ∈ G the set-valued mappings Pa, Qa : G −→ G,
where Pa(x) = p(a, x) and Qa(x) = q(a, x) are compact-valued upper
semicontinuous mappings with the following properties:

(1) Pa(a) = {c} and Qa(c) = {a}.

(2) Pa = Q−1
a , i.e. Pa(Q(a(x)) = Qa(P (a(x)) = {x} for each x ∈ G.

(c) Pa is an almost homeomorphism of the space G.

Corollary 3.4. Any topological homogeneous polyalgebra is an al-
most homogeneous space.

Proposition 3.5. A topological polygroup (G, e,−1 , ·) has a struc-
ture of a topological homogeneous polyalgebra.
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Abstract

We study octahedron manifolds and its completions in H3.

Keywords: Hyperbolic space, manifolds, completions of ma-
nifolds.

1 Introduction

In the work [1] W.Thurston developed the theory of the completion of
orientable hyperbolic 3-manifold. But he did not consider the comple-
tion of incomplete non-orientable hyperbolic manifolds. It is possible
to develop the theory of the completion of such non-orientable mani-
folds, too, but the method of Thurston cannot be used in this case.
For this case the hyperbolic space should be considered from the point
of view of synthetic, i.e. Poincare models, or some other models of the
hyperbolic space cannot be used.

Consider a complete non-compact hyperbolic 3-manifold M with
finite volume. As it is shown in [2] it is rigid which means that two such
manifolds with isomorphic fundamental groups are homeomorphic. If
we begin to deform the manifold M it becomes incomplete but its
completion is possible.

Our communication is devoted to both orientable and non-orientable
manifolds obtained by the identification of faces of the hyperbolic oc-
tahedron with the vertices being infinitely removed.

In the hyperbolic space H3 consider on octahedron with all the ver-
tices on the absolute. The set of such octahedra forms a six-parameters
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family, i.e. depends on six continuons parameters. Because all the fa-
ces of these octahedra are congruent (as triangles with all the vertices
on the absolute), there exist several schemes of the face identifications
that yield manifolds, either orientable or non-orientable. These ma-
nifolds may differ one from another by the orientation (orientable or
non-orientable) and by the number of cusps, i.e. subsets of the form
T 2× [0,∞) (the produkt of a torus by a ray) which are orientable cusps
and subset of the form K2 × [0,∞) (the product of a Kleins bottle by
a ray) which are non-orientable cusps [3].

Label infinitely removed vertices of the octahedron with the num-
bers 1, 2, 3, 4, 5, 6. For metric calculations we divide the octahedron
into four simplexes:

T1(1, 3, 2, 5);T2(1, 3, 4, 5);T3(1, 3, 4, 6);T4(1, 3, 2, 6).

Let dihedral angles of these tetrahedra be:

T1(α1, β1, γ1);T2(α2, β2, γ2);

T3(α3, β3, γ3);T4(α4, β4, γ4).

Then the set of octahedra which are divided into these four sim-
plexes forms a six-parametr family and satisfies the system of equations
(1):

α
1
+ β

1
+ γ

1
= π, α

2
+ β

2
+ γ

2
= π;

α
3
+ β

3
+ γ

3
= π;α

4
+ β

4
+ γ

4
= π;

α
1
+ α

2
+ α

3
+ α

4
= 2π;

(sinβ1sinβ2sinβ3sinβ4)/(sinγ1sinγ2sinγ3sinγ4) = 1.

Identify faces of the octahedron by the following scheme:

(1, 2, 5)ϕ1(3, 4, 5); (2, 3, 6)ϕ2(4, 1, 6);

(2, 3, 5)ϕ3(1, 6, 2); (1, 4, 5)ϕ4 (6, 3, 4)
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Then the identifications of ϕ1, ϕ2, ϕ3, ϕ4 yield an incomplete non-
orientable manifold M1 if dihedral angles of the simlexis satisfy the
equations of system (1) and besides satisfy the following equations:

γ1 + γ2 = γ3 + γ4;

α1 + α2 = α3 + α4;

(sin2γ1sinα2sinβ2sinβ3sinα4)/(sinα1sinβ1sin
2γ2sinα3sinβ4) = 1

(sin2α1sinβ2sinγ2sinγ3sinβ4)/(sinβ1sinγ1sin
2α2sinβ3sinγ4) = 1

(sinβ1sinα2sinα3sinβ4)/(sinα1sinβ2sinβ3sinα4) = 1

The manifold M1 has one non-orientable cusp. We obtain the com-
pletion of the manifoldM1 if we odd to the equations one more equation

α4 − β2 − γ4 = π/k, k > 4.

As a result we obtain a countable series of non-orientable orbifolds.
A fundamental polyhedron for these orbifolds is a truncated simplex,
whose four faces are regular triangles with angles of α = π/(3k), k =
2, 3, ... and other four faces are hexagons with right angles.

Identify faces of the octahedron by following scheme:

(1, 2, 5)ϕ1(3, 4, 5); (2, 3, 6)ϕ2(4, 1, 6);

(2, 3, 5)ϕ3(1, 2, 6); (1, 4, 5)ϕ4(4, 3, 6),

we obtain an incomplete non-orientable manifoldsM2 if dihedral angles
of the simplexes satisfy the equations of system (1) and the equations:

α1 + α2 = α3 + α4;

(sinγ1sinβ2sinβ3sinγ4)/(sinβ1sinγ2sinγ3sinβ4)×

×(sin2α1sinβ2sinγ2sinβ3sinγ4)/(sinβ1sinγ1sin
2α2sinγ3sinβ4) = 1

(sinβ1sinγ2sin
2α3sinβ4sinγ4)/(sinγ1sinβ2sinβ3sinγ3sin

2α4) = 1
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In this case 12 parameters of initial four simplex are related by ten
equations, i.e. we have two free parameters. The manifold M2 has
two cusps and both are non-orientable. Therefore any completion of
M2 yields orbifolds. Moreover, we can obtain several countable series
of orbifolds. If we demand that, besides the above ten equations, the
following equations should be satisfied:

β1 + β2 = β3 + β4;

β1 + β3 − β2 − β4 = (2π)/k, k = 3, 4, ...

we obtain a countable series of orbifolds which are obtained from M2

by completion on the cusp related to the vertices 5 and 6, whereas at
vertices 1,2,3,4 there is a non-orientable cusp.

If we demand that, besides the above ten equations, the following
equations should be satisfied:

β1 + β3 = β2 + β4;

β3 + β4 − β1 − β2 = (2π)/m,m = 3, 4, ...

then we obtain a countable series of orbifolds which are obtained from
M2 by completion on the cusp related to the vertices 1,2,3,4, where as
at vertices 5,6 there is a non-orientable cusp.

Finally, if we complete the manifold M2 on both cycles of verti-
ces, then to the above ten equations the following equations should be
added:

β1 + β3 − β2 − β4 = (2π)/k, k = 3, 4, ...;

β3 + β4 − β1 − β2 = (2π)/m,m = 3, 4, ...

Then we obtain a series of orbifolds which depends on two integer
parameters. A fundamental polyhedron for these series of orbifolds is
truncated tetrahedron. For faces of this polyhedron a triangles with
one angle of π/k, k = 3, 4, ..., and two angles of π/(2m),m = 3, 4, ....
Other four faces of this polyhedron are hexagons with all right angles.

If we identify faces of the octahedron by the following scheme:

(1, 2, 5)ϕ1(4, 3, 5); (2, 3, 5)ϕ2(1, 4, 5);
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(1, 2, 6)ϕ3(4, 1, 6); (3, 4, 6)ϕ4(2, 3, 6),

then we obtain an incomplete non-orientable 3-manifold with three
cusps. One of this cusps is orientable, the two other cusps are non-
orientable. To the equations of the octahedron the following equations
should be added:

(sinβ1sinβ2)/(sinγ1sinγ2) = 1

sinβ1sinβ2sinα3sinα4)/(sinα1sinα2sinγ3sinγ4) = 1

If to the obtained equations we add the equations:

α3 = α4, β3 = β4,

then both non-orientable cusps will be complete.
For the completion of orientable cusp at vertex 5 we consider a

horosphere S centred at 5. On this horosphere we obtain a similarity
symmetry group that is induced by the motions ϕ1 and ϕ2. In order
this group be discrete it should be generated by two spiral rotations f1
and f2 which are related by the equations:

m× ψ1 + n× ψ2 = 2π; km1 = kn2 ,

where m and n are natural coprime numbers and m + n > 5. In
this equations ψ1 and ψ2 are rotation angles, k1 and k2 are similarity
coefficients of the spiral rotations f1 and f2. Then for the completion of
the cusp to the above system the following equations should be added:

m(β1 − β2) + n(γ2 − γ1) = 2π;

((sinγ1sinα2)/(sinα1sinγ2))
m = ((sinα1sinβ2)/(sinβ1sinα2))

n,

where m and ;n are natural co-prime numbers and m+n > 5. Varying
the numbers m and n we obtain a countable series of non-orientable
noncompact hyperbolic 3-manifolds Mmn, and the volumes of these
manifolds are bounded by the volume of a regular hyperbolic octahe-
dron with all the vertices being on the absolute.
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If we identify faces of the octahedron by the following scheme:

(1, 2, 5)ϕ1(2, 3, 5); (1, 2, 6)ϕ2(4, 3, 5);

(1, 4, 5)ϕ3(2, 3, 6); (1, 4, 6)ϕ4(4, 3, 6),

we obtain an incomplete non-orientable 3-manifolds with two cusps.
One of these cusps is orientable, the other cusp is non-orientable. In
this case to the equations of octahedron the following three equations
should be added:

α2 = α4;

(sin2γ1sinγ2sinγ4)/(sin
2β1sinβ2sinβ4) = 1;

(sinα1sinβ2sinα3sinβ4)/(sinγ1sinα2sinγ3sinα4) = 1.

Then reasoning as in the previous case we obtain a countable series
of non-orientable noncompact manifolds Pmn with one non-orientable
cusp whose volumes are bounded by the volume of a regular hyperbolic
octahedron with all the vertices on the absolute.
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Abstract

We study unbounded polyhedra with finite volume in H3

whose all dihedral angles are equal to π/2.
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1 Introduction

The problem of bounded polyhedra in the space H3 with all right dihe-
dral angles has been solved in the work [1]. The present communication
is aimed at the question of unbounded polyhedra with finite volume in
H3 whose all dihedral angles are equal to π/2. It is clear that such
polyhedra tile H3 face-to-face and tile-transitive.

We do reasoning from the point of view of synthetic geometry. It is
clear that to each proper vertex of a polyhedron with all right angles
exactly three edges are adjacent while to each infinitely remove vertex of
such a polyhedron exactly four edges are adjacent. Such a polyhedron
can have k-gons as two-dimensional faces with proper vertices for k ≥ 5
and l-gons as two-dimensional faces with all infinitely remote vertices
for l > 3.

One of the simplest unbounded polyhedra with all right angles can
be obtained by ”glueing” together of two halves of a simplex with all
infinitely remote vertices and dihedral angles (π/2, π/4, π/4. As a result
we obtain a polyhedron with two proper vertices and three infinitely
remote vertices. All its faces are triangles with one right angle and
two zero angles. This polyhedron seems to have the minimum volume
among polyhedra of such kind.
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2 Some results

Now introduce one concept we need for further reasoning.
A spherical sack is a closed surface diffeomorphic to the two-

dimensional sphere. Any chord situated inside the surface and joining
any two points of the surface will be called a diameter of the spherical
sack. It is clear that diameters will have different lengths. We say
that we blow the spherical sack meaning some diameters increase in
length but not necessarily all of them, some diameters may decrease
in length.But it is obligatory that the volume of the space inside the
spherical sack should increase.

Now we explain our method of contraction, of a bounded edge of a
polyhedron into a point of the absolute (i.e. into an infinitely remote
vertex). The method includes three stages. At the first stage we obtain
a polyhedron K with all the vertices being on the absolute (i.e. each
proper vertex becomes infinitely remote). At the second stage we re-
move the vertices beyond the absolute. So in the obtained polyhedron
edges adjacent to a vertex form a hyperbolic bundle of straight lines,
and we cut the bundle by a plane orthogonal to the straight lines of
the bundle. As a result we obtain a new polyhedron P . In the po-
lyhedron P the number of faces increases, because new faces appear
corresponding to vertices of the polyhedron K and orthogonal to faces
of the polyhedron P inherited from the polyhedron K. At the third
stage we obtain a polyhedron M when all the edges of the polyhedron
P inherited from the polyhedron K are contracted into points of the
absolute, i.e. they become infinitely remote vertices of the polyhedron
M and the polyhedron M has all dihedral angles equal to π/2.
Theorem 1. Let K be a bounded polyhedron in the hyperbolic space
H3. Then in H3 there exists a corresponding to K unbounded poly-
hedron P of finite volume with all vertices being infinitely remote and
with all right dihedral angles which has the following structure: 1) the
number of infinitely remote vertices of the polyhedron P is equal to the
number of edges of the polyhedron K; 2) faces of the polyhedron P be-
longs to two types: polygons corresponding to faces of the polyhedron K
and polygons corresponding to polyhedral vertices of the polyhedron K.
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On polyhedra in H3 with right dihedral angles

Consider the simplest bounded polyhedron in H3, a tetrahedron.
Inscribe in the tetrahedron a spherical sack and begin to blow it. The
tetrahedron will decrease in its volume and its dihedral angles will
decrease. Continue to blow spherical sack and at some moment all
the vertices of the tetrahedron become infinitely remote, then they go
beyond the absolute. Then the edges adjacent to a vertex form a hyper-
bolic bundle. For each vertex cut the bundle by a plane orthogonal to
the edges. As a result we obtain a truncated tetrahedron whose four fa-
ces are triangles and four faces are hexagons with all inner angles equal
to Π/2. If we continue to blow the spherical sack, dihedral angles at
”old” edges will decrease as well as ”old” edges will decrease,where as
dihedral angles at ”new” edges will become right and ”new” edges will
increase in length. If go to limit, ”old” edges will contract into points
of the absolute, but ”new” edges will become straight lines. The trun-
cated tetrahedron will become a regular octahedron with all vertices
being infinitely remote and with right dihedral angles.

The prof of Theorem 1 reduces to the three above-mentioned sta-
ges. At the first stage we inscribe in to the polyhedron K a spherical
sack and begin to blow it. The initial polyhedron will increase in vo-
lume, its dihedral angles will decrease, edges will increase. We continue
the process until all the vertices of the polyhedron K become infinitely
remote and edge segments become straight lines. Blowing further the
spherical sack we achieve the case when the edges of the polyhedron
K adjacent to each its vertex will form a hyperbolic bundle of straight
lines. Then for each such hyperbolic bundle there exists a plane ort-
hogonal to all the straight lines of the bundle. Cut by such planes
the parts that go beyond the absolute and obtain a new polyhedron
S. Faces of the polyhedron S correspond to polyhedral vertices of the
polyhedron K as well as to faces of K truncated at vertices. So the
number of faces of the polyhedron S is equal to the number of faces of
the polyhedron K plus the number of vertices of K. Dihedral angles
at ”new” faces of the polyhedron S is equal to the number of faces of
the polyhedron K plus the number of vertices of K. Dihedral angles at
”new” faces of the polyhedron S will be right, the polyhedron S will be
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bounded. Continuing to blow the spherical sack we will obtain polyhe-
dra analogous to S, but the vertices of ”new” and ”old” faces will tend
to the absolute, the lengths of edges of ”new” faces will increase, and
dihedral angles at these faces will remain right. As to the ”old” edges
of the polyhedron S, their ”lengths” and dihedral angles at them will
decrease. Finally, continuing to blow the spherical sack we will achieve
the case when all the ”old” edges of the polyhedron S will contract
into points of the absolute, and we will obtain a polyhedron P with all
right angles.
Theorem 2. Let K be a polyhedron of finite volume with proper and
infinitely remote vertices in the hyperbolic space H3. Then in H3 there
exists a corresponding to K polyhedron P of finite volume with all the
vertices being on the absolute and with all right dihedral angles which
has the following structure: 1) the number of infinitely remote vertices of
the polyhedron P is equal to the number of edges of the polyhedron K; 2)
faces of the polyhedron P belong to two types: polygons corresponding
to faces of the polyhedron K and polygons corresponding to polyhedral
vertices of the polyhedron K (both proper and infinitely remote).
Theorem 3. Let K be a polyhedron of finite volume with all the
vertices being infinitely remote in the hyperbolic space H3. Then in
H3 there exists a corresponding to K polyhedron P of finite volume
with all the vertices being on the absolute and with all right dihedral
angles which has the following structure: 1) the number of infinitely
remote vertices of the polyhedron P is equal to the number of edges
of the polyhedron K; 2) faces of the polyhedron P belong to two
types: polygons corresponding to faces of the polyhedron K and polygons
corresponding to polyhedral vertices of the polyhedron K.

The prof of Theorems 2 and 3 can be done analogously to the prof
of Theorem 1.
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The First Fundamental Theorem for Similarity

Groups in D3 and Application to Integral B-

Splines

Muhsin Incesu, Osman Gürsoy

Abstract

In this paper we stated the First Fundamental Theorem for Si-
milarity Group in three dimensional space of dual vectors S(3, D)
and its main subgroup LS(3, D). Then applied the results of this
theorem to Spatial NURBS curves and surfaces and studies re-
sults by real spaces.

Keywords: FFT, B-Splines, space of dual vectors, similarity
groups

1 Introduction

A dual number A is defined as A = a+ ǫa∗, where a and a∗ ∈ R and
ǫ2 = 0 (ǫ 6= 0). The set of all dual numbers is denoted by D. Similarly
a dual vector X is defined as X = x + ǫx∗, where x and x∗ ∈ R3 and
ǫ2 = 0. The set of all dual vectors is denoted by D3.

Let D3 be a three dimensional dual Euclidean space then the trans-
formation F : D3 7→ D3 such that ‖F (x)− F (y)‖ = λ ‖x− y‖ is called
a similarity transformation if there exist a Λ dual number such that
Λ = λ+ ǫλ∗ and λ > 0 for every x, y ∈ D3.

The group of all the orthogonal transformations defined in D3 is de-
noted by O(3,D). The group of all the linear similarity transformations
defined in D3 is denoted by LS(3,D). The group of all the similarity
transformations (including translations) defined in D3 is denoted by
S(3,D).
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2 First Fundamental Theorem for Similarity

Groups

Let D
[
x(1), x(2), ..., x(m)

]
be a ring of polynomials for m vector vari-

ables x(1), x(2), ..., x(m) in D3 over the field D and a transformation
group G be given. Then the algebra of G−invariant polynomials for
m vector variables x(1), x(2), ..., x(m) in D3 over the field D is denoted

by D
[
x(1), x(2), ..., x(m)

]G
and the field of G−invariant rational functi-

ons for m vector variables x(1), x(2), ..., x(m) in D3 over the field D is

denoted by D
(
x(1), x(2), ..., x(m)

)G
.

Theorem (FFT for LS(3,D) ): Let x(1), x(2), ..., x(m) be m vector
variables different from zero in D3. For i, j = 1, 2, ...,m the generator

system of the field D
(
x(1), x(2), ..., x(m)

)LS(3,D)

is as follows

〈
x(i), x(j)

〉

〈
x(1), x(1)

〉 , i ≤ j, (1)

Theorem : If any rational function f
(
x(1), x(2), ..., x(m)

)
with m vector

variables is S(3,D)− invariant then the rational function g defined by

g
(
x(1), x(2), ..., x(m)

)
= f

(
0, x(2) − x(1), x(3) − x(1), ..., x(m) − x(1)

)

(2)
is LS(3,D)− invariant. On the contrary Let the function f

(
x(1), x(2), ...,

x(m)
)
be stated as

f
(
x(1), x(2), ..., x(m)

)
= h

(
x(2) − x(1), x(3) − x(1), ..., x(m) − x(1)

)
(3)

then if the function h is LS(3,D)− invariant then the function f is
S(3,D)− invariant.

Theorem :(FFT for S(3,D)) Let x(1), x(2), ..., x(m) be m vector
variables different from each other in D3. For i, j = 1, 2, ...,m the

generator system of the field D
(
x(1), x(2), ..., x(m)

)S(3,D)

is as follows
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〈
x(i) − x(1), x(j) − x(1)

〉

〈
x(2) − x(1), x(2) − x(1)

〉 , i ≤ j, (4)

3 Non Uniform B-Spines

Definition: The B- Spline basis functions of degree k, denoted Ni,k(t),
defined by the knot vector t0, t1, ..., tm are defined recursively as follows

Ni,0(t) =

{
1, if t ∈ [ti, ti+1)
0, otherwise

(5)

Ni,k(t) =
t− ti

ti+k − ti
Ni,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1

Ni+1,k−1(t) (6)

for i = 1, 2, ..., n.

Definition: The B- Spline curve of degree k on the interval [a, b]
with control points b0, b1, ..., bn and knots t0, t1, ..., tm such that ti ≤

ti+1 (for i = 0, 1, ...m− 1) and [a, b] = [tk, tm−k] (0 ≤ k ≤ m) is defined
by

B(t) =

n∑

i=0

biNi,k(t)

where Ni,k(t) are the B-Spline basis functions of degree k. [3]

Theorem: Let B(t) be the B-Spline curve of degree k on the in-
terval [a, b] with control points b0, b1, ..., bn and knots t0, t1, ..., tm pro-
perties and T be an Affine transformation Then

T (B(t)) =
∑n

i=0
T (bi)Ni,k(t) for t ∈ [tr, tr+1)

is satisfied.[3]

Theorem: Let B(t) be the B-Spline curve of degree k on the in-
terval [a, b] with control points b0, b1, ..., bn and knots t0, t1, ..., tm Then
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any LS(3,D)-invariant property of B(t) can be stated as the function
of the elements of these system

〈bi, bj〉

〈b1, b1〉
, i ≤ j, (7)

Theorem: Let B(t) be the B-Spline curve of degree k on the in-
terval [a, b] with control points b0, b1, ..., bn and knots t0, t1, ..., tm Then
any S(3,D)-invariant property of B(t) can be stated as the function of
the elements of these system

〈bi − b1, bj − b1〉

〈b2 − b1, b2 − b1〉
, i ≤ j, (8)
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The generalized symmetry of the geometrical

figures regularly weighted by scalar tasks

Alexandru Lungu

Abstract

In this paper are studied the mixed transformations of the
geometrical figures regularly weighted by ”physical” scalar tasks.
Are determined the conditions in which one mixed transformation
is or exactly transformation of P -symmetry, or exactly transfor-
mation of Wp-symmetry. Some crystallographic groups of Wp-
symmetry are analysed.

Keywords: groups, symmetry, generalized symmetries.

1 Introduction

The theory of symmetry of the real crystals gives rise to new gene-
ralizations of classical symmetry: the Shubnikov’s antisymmetry, the
multiple antisymmetry, the Belov’s colour symmetry, the Zamorzaev’s
P -symetry, the cryptosymmetry, e.t.c. We shall discuss briefly the es-
sence of the generalized symmetry of the geometrical figures regularly
weighted by scalar tasks.

2 Mixed transformations of figures regularly

weighted by scalar tasks

Let us have discrete group of symmetry G of geometrical figure F from
geometric space S of constant curvature and finite set N = {1, 2, ...,m}

of ”indexes”, which mean a non-geometrical feature. Let each ”index”

c©2017 by Alexandru Lungu
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r from the set N have a scalar nature (temperature, density, color).
On fix a certain transitive group P of permutations over N . The de-
composition {Si} of space S within respect to the group G always is
regular. We will note with the symbol Fi the intersection of geometric
figure F with the fundamental domain Si of the decomposition {Si} of
the space S. Ascribe to each interior point M of Fi the same ”indexes”
r1, r2, , ..., rk , from the set N , where k is a divisor of m = |N |. We
obtain one regularly weighted figure F (N) with summary scalar load
N .

The mixed transformation g̃ of the ”indexed” figure F (N) is com-
posed of two independent components: g̃ = gw, where g is pure geo-
metrical isometric transformation and w is certain complex rule which
describes the transformation of the ”indexes” r ∈ N , ascribed to the
interior points M of certain domain Fi.

If the rule w is the same for every ”indexed” point of space, then
the mixed transformation g̃ is exactly a transformation of P -symmetry
[1]. The set of transformations of P -symmetry of any geometric figure
F well-balanced by scalar ”physical” load N forms a group, where is
subgroup of the direct product of the group P with generating group
G.

The theory of P -symmetry groups, inclusive the methods of deri-
ving the groups of different tips from given groups P and G was elabo-
rated and developed by Zamorzaev’s geometrical school from Chisinau
[1-3].

The ”indexes” ri and rj , ascribed to the points which belong to
distinct domains Fi and Fj , are transformed, in general, by different
permutations pi and pj . The permutations pi and pj are from given
transitive group of permutations P over N . In this case the rule w is
composed exactly from |G| components-permutations p ∈ P . In condi-
tions of this case the transformation g̃ = gw is exactly a transformation
of Wp-symmetry [3,4]. The set of transformations of Wp-symmetry of
the given ”indexed” figure F (N) forms a group, which fulfil certain
conditions of classification, where is subgroup of the left standard Car-
taisian wreath product of initial group P with group G.

220



The symmetry of the figures regularly weighted by scalar tasks

3 Some properties of Wp-symmetry groups

Let G(Wp) be a group of Wp-symmetry with initial group P , generating
group G and subset W ′ = {w|g(w) ∈ G(Wp)} ⊆ W , with the symmetry
subgroup H = G(Wp) ∩G and the subgroup V = G(Wp) ∩W = G(Wp) ∩

W ′ of W -identical transformations. The group G(Wp) is called major
if w0 < V = W ′ = W . If W ′ is a non-trivial subgroup of W , then the
group G(Wp) is called W ′-semi-major or W ′-semi-minor according to
the cases when w0 < V = W ′ or w0 = V < W ′. If W ′ ⊂ W , but W ′ is
not a group, G(Wp) is called W ′-pseudo-minor when w0 = V ⊂ W ′.

Any major group of Wp-symmetry with the finite groups G and P
it is construct in shape of the left standard direct wreath product of
group G with initial group P , accompanied with a fixed isomorphism

ϕ : G → AutW by the rule ϕ(g) =
↼
g , where

↼
g : w 7→ wg.

Any W ′-semi-major finite group of Wp-symmetry with initial group
P and generating groupG can be derived fromG and P by the following
steps: 1) we construct the direct product W of isomorphic copies of
the group P which are indexed by elements of G; 2) we find in W so

non trivial subgroups W ′ wich verify the conditions
↼
g (W ′)W ′ = W ′,

for each g from group G; 3) we combine pairwise each g of group G
with each w of subgroup W ′; 4) we introduce into the set of all these
pairs the operation giwi ◦ gjwj = gkwk, where gk = gigj , wk = w

gj
i wj

and w
gj
i (gs) = wi(gjgs).

Any W ′-semi-minor (respectively, pseudo-minor) finite group of
Wp-symmetry with initial group P and generating group G can be
derived from G and P by the following steps: 1) we construct the di-
rect product W of isomorphic copies of the group P which are indexed
by elements of G; 2) we find in W so non trivial subgroups W ′ (re-
spectively, the subset W ′ with unit, which is not a subgroup ) wich

verify the condition
↼
g (W ′)W ′ = W ′, for each g from group G; 3) we

construct an exact natural left quasi-homomorphism µ with the kernel
H of the group G onto the subgroup W ′ (respectively, onto the subset
W ′ with unit, which is not a subgroup ) by the rule µ(Hg) = w ; 4) we
combine pairwise each g of class Hg with w= µ(Hg); 5) we introduce
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into the set of all these pairs the operation giwi ◦ gjwj = gkwk, where
gk = gigj , wk = w

gj
i wj and w

gj
i (gs) = wi(gjgs).

4 Concrete results

From the crystallographic point generating groups G and group P of
permutations (P ∼= C2), we obtained 32 major groups of Wp-symmetry.
From the netrivial cyclical crystallographic punctual groups G and
group P (P ∼= C2), we obtained: 9 major groups, 20 W ′-semi-major
groups, 10 semi-minor groups and 20 pseudo-minor groups of Wp-
symmetry.
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On Set-Valued Periodic Functions on

Topological Spaces

Dorin I. Pavel

Abstract

In this paper we study general properties of almost periodic
set-valued functions on a given topological space.

Keywords: Pompeiu-Hausdorff distance, almost periodicity,
set-valued function.

1 Introduction

Let A and B be two non-empty subsets of a metric space (G, d).
We define their Pompeiu-Hausdorff distance dP (A,B) by dP (A,B) =
max{sup{inf{d(x, y) : y ∈ B)} : x ∈ A}, sup{inf{d(x, y) : x ∈ A)} :
y ∈ B}}.

Denote by d the Euclidean distance on the space R of reals and B(R)
the space of all non-empty bounded subsets of R with the Pompeiu-
Hausdorff distance dP (A,B).

The space (B(R), dP ) is a complete pseudometric space with the
properties: dP (A,B) = 0 if and only if clA = clB; dP (A,B) =
dP (B,A); dP (A,C) ≤ dP (A,B) + dP (B,C).

Fix a topological space G. By T (G) denote the family of all single-
valued continuous mappings of G into G. Relatively to the operation
of composition, the set T (G) is a monoid (a semigroup with unity).

A single-valued ϕ : G −→ B(R) is called a set-valued function on
G. For any two set-valued functions ϕ,ψ : G −→ B(R) and t ∈ R are
determined the distance ρ(ϕ,ψ) = sup{dP (ϕ(x), ψ(x)) : x ∈ G} and
the set-valued functions ϕ + ψ, ϕ · ψ, −ϕ, ϕ ∪ ψ, where (ϕ ∪ ψ)(x) =

c©2017 by Dorin I. Pavel
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(ϕ(x) ∪ ψ(x), and tϕ. We put (ϕ ◦ f)(x) = ϕ(f(x)) for all f ∈ T (G),
ϕ ∈ SF (G) and x ∈ G.

If 0 6∈ ϕ(x) for each x ∈ G, then is determined the set-valued
functions ϕ−1.

For any non-empty compact subset F of R is determined the con-
stant set-valued function kF , where kF (x) = F for each x ∈ G. If t ∈ R,
we put kt = k

{t}. The constant function kF is continuous and closed.

Let SF (G) be the family of all set-valued functions on G. The space
(SF (G), ρ) is a complete pseudometric space with the properties: (1)
ρ(ϕ,ψ) = 0 if and only if clϕ(x) = clψ(x) for each x ∈ G; (2)ρ(ϕ,ψ) =
ρ(ψ,ϕ); (3) ρ(ϕ, θ) ≤ ρ(ϕ,ψ) + ρ(ψ, θ). Denote by SF ∗(G) the family
of all bounded set-valued functions on G, by SFc(G) the family of all
compact-valued functions on G and SF ∗

c (G) = SFc(G) ∩ SF
∗(G).

The space (SFc(G), ρ) is a complete metric space and the sets
SF ∗(G) and SFc(G) are closed in SF (G).

2 Algebras of set-valued functions

Fix a space G. A family L ⊂ SF (G) is called an m-group of set-valued
functions if: k0 ∈ L; −ϕ,ϕ + ψ ∈ L for any ϕ,ψ ∈ L. A family
L ⊂ SF (G) is called an m-ring of set-valued functions if: k1 ∈ L

and L ⊂ SF (G) is an m-group; tϕ, ϕ · ψ ∈ L for any ϕ,ψ ∈ L. A
family L ⊂ SF (G) is called an m-algebra of set-valued functions if:
L ⊂ SF (G) is an m-ring; ϕ−1 ∈ L provided ϕ ∈ L and 0 6∈ clRϕ(x) for
each x ∈ G.

Obviously, SF (G), SF ∗(G) and SFc(G) are m-algebras of set-
valued functions. Moreover, the family C(G) of all continuous single-
valued functions f : G −→ R is an m-algebra of set-valued functions.
The intersection of any family of m-algebras (m-rings, m-groups) is an
m-algebra (m-ring, m-group).

Theorem 2.1. The family LSC(G) of all lower semicontinuous

functions is an m-algebra of set-valued functions. Moreover, we have

ϕ ◦ f, ϕ ∪ ψ ∈ LSC(G) for all ϕ,ψ ∈ LSC(G) and f ∈ T (G).
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Corollary 2.2. The family LSC∗(G) of all bounded lower semicon-

tinuous functions and the family LSCc(G) of all compact-valued lo-

wer semicontinuous functions are m-algebras of set-valued functions.

Moreover, we have ϕ ◦ f, ϕ ∪ ψ ∈ LSC∗(G) for all ϕ,ψ ∈ LSC∗(G)
and f ∈ T (G). Similarly, we have ϕ ◦ f, ϕ ∪ ψ ∈ LSCc(G) for all

ϕ,ψ ∈ LSCc(G) and f ∈ T (G).

Theorem 2.3. The family USC(G) of all upper semicontinuous

functions is an m-algebra of set-valued functions. Moreover, we have

ϕ ◦ f, ϕ ∪ ψ ∈ USC(G) for all ϕ,ψ ∈ USC(G) and f ∈ T (G).

Corollary 2.4. The family USC∗(G) of all bounded upper semiconti-

nuous functions and the family USCc(G) of all compact-valued upper

semicontinuous functions are m-algebras of set-valued functions. Mo-

reover, we have ϕ ◦ f, ϕ ∪ ψ ∈ USC∗(G) for all ϕ,ψ ∈ USC∗(G)
and f ∈ T (G). Similarly, we have ϕ ◦ f, ϕ ∪ ψ ∈ USCc(G) for all

ϕ,ψ ∈ USCc(G) and f ∈ T (G).

3 Almost periodic set-valued functions

Fix a topological space G. On SF (G) we consider the topology gene-
rated by the distance ρ. If ϕ ∈ SF (G) and f ∈ T (G), then ϕf = ϕ ◦ f
and ϕf (x) = ϕ(f(x)) for any x ∈ G). Evidently, ϕf ∈ SF (G).

Fix a submonoid P of the monoid T (G). We say that P is a monoid
of continuous translations of G. The set P is called a transitive set of
translations of G if for any two points x, y ∈ G there exists f ∈ P such
that f(x) = y.

For any function ϕ ∈ C(G) we put P (ϕ) = {ϕf : f ∈ P}.

Remark 3.1. The following assertions are true: (1) If ϕ ∈ SF ∗(G),
then P (ϕ) ⊆ SF ∗(G). (2) If ϕ ∈ SFc(G), then P (ϕ) ⊆ SFc(G). (3)

If ϕ ∈ LSC(G), then P (ϕ) ⊆ LSC(G). (4) If ϕ ∈ USC(G), then

P (ϕ) ⊆ USC(G).

Definition 3.2. A function ϕ ∈ SF (G) is called a P -periodic function

on a space G if ϕ ∈ SF ∗(G) and the closure P̄ (ϕ) of the set P (ϕ) in

the space SF (G) is a compact set.
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Denote by P -aps(G) the subspace of all P -periodic set-valued
functions on the space G.

If the monoid P is finite, then P -aps(G) = SF ∗(G).
Theorem 3.3. Let P be a monoid of continuous translations of G.
Then P -aps(G) has the following properties:

1. P -aps(G) is an m-algebra of set-valued functions on the space

G.
2. If ϕ ∈ SF (G) and ϕ̄(x) = clRϕ(x) for any x ∈ G, then ϕ ∈ P -

aps(G) if and only if ϕ̄ ∈ P -aps(G).
3. P -aps(G) is a closed subspace of the complete pseudometric space

SF (G).
4. If ϕ ∈ SF (G) is a constant set-valued function, then ϕ ∈ P -

aps(G).
Proof. Assertion 1 follows from the following facts:

- if A is a compact subset of R and 0 6∈ A, then the set A−1 is
compact;

- if A and B are compact subsets of R, then the sets A∪B, A+B
and A · B are compact.

Assertion 2 follows from the equality ¯P (ϕ) = ¯P ( ¯ )ϕ for any ϕ ∈

SF (G). Assertion 3 follows from the completeness of the Pompeiu-
Hausdorff distance dP (A,B). Assertion 4 is obvious.
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String Theory Phenomenology Without

Compactification or Localisation

Alexandru Popa

Abstract

In the paper the model of space is proposed that is suita-
ble for the string theory. The model is globally isotropic and
homogeneous. The advantage of described space is acceptable
phenomenology without compactification or localisation.

Keywords: homogeneous space, string theory, M-theory,
compactification, localisation.

1 Introduction

As known [1], the string theory, or its further development, superstring
theory and M-theory is at present the only serious candidate to “The-
ory of Everything” in physics. The main its problem however is the
phenomenology problem, that is, all variants require the space with
many dimensions: 26, 10 or 11, while the observable space–time is 4
dimensional. Two main ideas that were proposed to solve the pheno-
menology problem of string theory are compactification or localisation.

Both ways look like artificially introduced tricks to match to the
appearance rather than the physical reality, as none of these ways con-
structs isotropic and homogeneous space with observable properties,
as it is to expect from isotropically and homogeneously acting physical
principles and laws. This paper proposes another geometric approach,
that constructs a homogeneous space with necessary dimension and
with observable 4-dimensional space–time.

c©2017 by Alexandru Popa
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2 Preliminaries

The model of homogeneous spaces was introduced in [2]. The natu-
ral space metric was introduced with aim of generalized trigonometric
functions (k ∈ {−1, 0, 1}):

C(x) = C(x, k) =

∞∑

n=0

(−k)n
x2n

(2n)!
=






cos x, k = 1,

1, k = 0,

coshx, k = −1;

S(x) = S(x, k) =
∞∑

n=0

(−k)n
x2n+1

(2n+ 1)!
=






sinx, k = 1,

x, k = 0,

sinhx, k = −1.

It was also mentioned [3] that not natural metric parameters can
be embedded in definition of generalized trigonometric functions.

3 Main result

Construct the functions Cr(x), Sr(x), for some r ∈ R. They are related
to generalized trigonometric functions (r = kp2, k = sign r, p =

√
|r|):

Cr(x) =

∞∑

n=0

(−r)n
x2n

(2n)!
=

∞∑

n=0

(−k)n
(px)2n

(2n)!
= C(px), (1)

Sr(x) =
∞∑

n=0

(−r)n
x2n+1

(2n + 1)!
=

1

p

∞∑

n=0

(−k)n
(px)2n+1

(2n+ 1)!
=

1

p
S(px). (2)

So the equation C2(px) + kS2(px) = 1 becomes:

Cr2(x) + kp2Sr2(x) = Cr2(x) + r Sr2(x) = 1, for some r ∈ R. (3)

Because the functions Cr(x), Sr(x) are expressible via C(x), S(x),
all the theory can be constructed on them, rather than on generalized
trigonometric functions. Namely, in virtue of (3), the theorem about
characteristic multiplication, Ki,j =

∏j−1

l=i kl becomes Ri,j =
∏j−1

l=i rl.
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4 Proper phenomenology

Let Bn = {k1, ..., kn} and n depends on concrete string or M-theory.
We can assume that:

• r1 ≈
1

~ is a large positive number depending on Planck’s constant.
It ensures microcosmic closed lengths across the first dimension.

• r2, ..., rn−4 ≈ 1 are positive numbers of order of magnitude of 1.
It ensures microcosmic closed lengths also in Bn−4 subspace.

• rn−3 ≈ −Λ depends on cosmological constant. It is small number
that ensures opening of the further dimensions to have macrosco-
pic lengths. The following cases are possible:

rn−3 < 0 models de Sitter space–time,

rn−3 = 0 models Minkowski space–time,

rn−3 > 0 models anti de Sitter space–time.

• rn−2 = −1

c
, where c is the speed of light. It ensures the connection

between space and time in Einstein’s relativity. Optionally:

rn−2 = 0 models the Galilean space and time connection.

• rn−1 = rn = 1 ensures 3-dimensional locally Euclidean space.

This model is similar to Sn−4 ×M4 space used in some string theories,
but it is globally homogeneous space. It has microscopic n − 4 di-
mensions, phenomenologically equivalent to point, and 4 macroscopic
dimensions, phenomenologically equivalent to Galilean, Minkowski, de
Sitter, anti de Sitter or some other space–times.

The model is theoretically relevant, because the space has sufficient
room to provide the standard model symmetry SU(3)×SU(2)×U(1).
However, as it is with all string theories, the space symmetry is much
richer than physically observable. The symmetry can be shrinked by
choosing r2, ..., rn−4 6= 1, still the symmetry group of this space is
significally larger that necessary.
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5 Further discussion

The essence of the Einstein equation in general relativity theory and
its further development is to correlate the space–time curvature and
the matter–energy interaction. Informally speaking, the presence of
matter–energy defines the space–time curvature with its geometry,
which in turn dictates how the matter has to move and energy has
to propagate. However, the space–time curvature is exactly the cha-
racteristic rn−3 of proposed model. The equation doesn’t include the
rest of specification characteristics. More broader approach would be
to write the equation that defines all n characteristics of the space
specification, and thus, whole its geometry.
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Construction of pointwise lattices in Euclidean

and Minkowski spaces with some given

properties

Lilia Solovei

Abstract

In this paper concrete construction methods of the several
Bravais types of pointwise lattices in Euclidean and Minkowski
spaces depending on some additional conditions have been ela-
borated.

Keywords: pointwise lattice, Bravais type, Euclidean space,
Minkowski space, crystallography.

1 Introduction

Let Rn (or 1
Rn) be the Euclidean n-dimensional pointwise space (or

Minkowski space) and Rn be a pointwise lattice in this space, i.e. Rn

is a set of points which have integer coordinates with respect to some
fixed basis:

Rn = {M :
−−→
OM =

∑n
i=1

xi~ai, xi ∈ Z}.

The basis {O,~a1,~a2, . . . ,~an} is the main basis of the lattice Rn. The
properties of the lattices depend on their transformations of symmetry.
A transformation of symmetry of the pointwise lattice is a motion of
space that maps this lattice onto itself. The most simple transforma-
tions of symmetry of a lattice are the parallel translations by any of
its vector. The set of all the parallel translations of each lattice is a
commutative group generated by the parallel translations determined
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by the vectors of a certain main basis. Other transformations of the
symmetry of the lattice either keep invariant at least one point (these
transformations are called pointwise transformations), or are composi-
tions of pointwise transformations with parallel translations. Rotati-
ons around k-dimensional planes k=1, 2, . . . , n−2 as well as reflections
through hyperplanes are transformations of symmetry. The pointwise
transformations keeping invariant one common point also form a group
named pointwise group of the lattice. The pointwise group in certain
main basis of the lattice is determined by a group of integer unimo-
dular matrices. The set of all the transformations of symmetry of the
given lattice forms its complete group of symmetry. Two lattices are
related to the same Bravais type if their complete groups of symmetry
are isomorphic[1].

The main problem to be solved is to build all Bravais types of the
lattices in the concrete given space. It is known that in Euclidean
spaces the number of the Bravais types of pointwise lattices is finite
and depends only on the dimension n (there are 5 types for n=2, 14
types for n=3, 64 types for n=4). In Minkowski spaces there exists an
infinite number of Bravais types of pointwise lattices. Since the problem
cannot be solved at all in many cases, it is necessary to elaborate
certain methods of constructing Bravais types of pointwise lattices in
the given space (Euclidean or Minkowski) that possess some of the
earlier properties (for example, given the characteristics of the angle of
rotation around a k-dimensional space, k = 1, 2 . . . , n− 2, either given
the characteristics of the corresponding quadratic forms, or the lattice
elements of symmetry are indicated etc.).

2 Construction of the pointwise lattices having

a k-dimensional plan of rotation

Let us give further some methods of constructing the Bravais types
of pointwise lattices in Euclidean and Minkowski spaces depending on
some additional conditions. If the pointwise lattice Rn in Euclidean or
Minkowski space is mapped onto itself by a rotation of the space around
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a k-dimensional plane G, k = 1, 2, . . . , n−2, then it is mapped onto itself
by a rotation around any k-dimensional plan which is parallel to G and
is of the same nature, but passes through a certain point of the lattice.
Let us suppose that the plane of rotation G passes through the point O
of the lattice. We construct a (n− k)-dimensional plane P that passes
through the point O and is absolutely perpendicular on G. It is knows
that each of these planes contains a k-dimensional sublattice ((n− k)-
dimensional respectively)[2]. If the plane G is a Euclidean or Minkowski
plane, then G∩P = {O} and the lattice consists of (n−k)-dimensional
sublattices that are situated in planes parallel to P intersecting G in
the points of the sublattices in this plane. These sublattices are called
fibers. Let us enumerate these fibers by integers. We suppose that the
fiber in the plane P is the null one; let us order points of the sublattice
in the plane G and enumerate them by integers (obviously, the set of
points of any lattice is countable). In Euclidean spaces all planes are
also Euclidean, and if they are absolutely perpendicular, then their
intersection is a single point (P + G = Rn). In Minkowski spaces the
plane G can be semi-Euclidean, then P is semi-Euclidean plane too.
In such a case G ∩ P = ℓ, ℓ being an isotropic strainght line and

P + G = R
(1)

n−1
, R

(1)

n−1
being a semi-Euclidean hyperplane. In this case

the hyperplane R
(1)

n−1
contains an (n − 1)-dimensional sublattice, and

the lattice Rn consists of the fibers parallel to one in this hyperplane. In
order to construct the corresponding lattice it is sufficient to build the

fiber in the hyperplane R
(1)

n−1
= P+G and to multiply it by translations

that are given by the vectors S · ~a, S ∈ Z, ~a ‖ R
(1)

n−1
.

It is obvious that the situation between any two neighbouring
enumerated fibersis common for the whole lattice. Therefore, in or-
der to construct all Bravais types of the pointwise lattices in any
n-dimensional Euclidean or Minkowski space that are mapped onto
themself by a rotation around a given k-dimensional plane G (k =
1, 2, . . . , n− 2), it is necessary: 1) to determine the dimension and the
nature of space in which the lattices are built, as well as the dimension
and the nature of the plane (or axis) of rotation; 2) to determine the
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nature of the planes absolutely perpendicular to the plan of rotation;
3) to establish the Bravais types of the pointwise lattices in (n − k)-
dimensional spaces situated in a Euclidean or Minkowski space of the
same dimension; 4) to examine the possibilities of intersection of the
planes P and G (G is fixed plane of rotation); 5) to compare the built
lattices and to establish the Bravais types of these pointwise lattices in
the n-dimensional space. If the groups of matrices are integer equiva-
lent, then the lattices are related to the same Bravais types.

3 Conclusion

Based on the properties of the elements of symmetry of the pointwise
lattices which are the intersection of the other elements of symmetry
some methods of construction of the Brawais types of pointwise lattices
from Euclidean and Minkovski n-dimensional space have been develo-
ped. The finding may be useful in construction of the lattices having
a k-dimensional plane of rotation.
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On isohedral tilings for hyperbolic group of

genus 2 by tiles with large number of edges

Elizaveta Zamorzaeva

Abstract

The paper studies isohedral tilings of the hyperbolic plane for
the group of translations of genus 2 by 14-gons. It is shown how
to enumerate all eligible cycles of valencies for polygon with large
number of vertices.

Keywords: isohedral tilings, hyperbolic plane, group of
translations, genus two.

On the Euclidean plane there are 2 types as well as 2 Delone classes
of isohedral tilings by disks for the group of translations p1. Those
disks are parallelograms and center-symmetric hexagons (if convex).
On the hyperbolic plane there are a countable series of discrete groups
of translations with compact fundamental domain, each group of the
series is characterized by its genus. The simplest hyperbolic group of
translations has genus 2, its Conway’s orbifold symbol is ◦◦. So I study
isohedral tilings for the hyperbolic translation group of genus 2.

Definition. Let W be a tiling of the hyperbolic plane with disks,

G be a discrete isometry group with a bounded fundamental domain.

The tiling W is called isohedral with respect to the group G if G acts

transitively on the set of all disks of the tiling.

Isohedral tilings of the hyperbolic plane are enumerated up to De-
lone classes. A Delone class takes in consideration a tiling W , a group
G and the action of the group G on the tiles of W (see [1]).

Any translation group admits only fundamental Delone classes of
tilings, i. e. tilings of the plane with fundamental domains. To find
isohedral tilings for the hyperbolic translation group of genus 2, I have
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solved some Diophantine equations in integers, then use B. Delone’s
adjacency diagrams and adjacency symbols [2] (see also [1]).

In the present communication I would like to dwell upon some new
difficulties that arise when dealing with polygons with a large number
of vertices.

The solutions to Diophantine equatons give us k = 8, 10, 12, 14,
16, and 18 as the numbers of vertices of a polygon. For k = 14 there
are two sets of vertex valencies: the set A contains nine 3 and five 5,
the set B contains six 3 and eight 4. From the sets of valencies one
should form all possible ordered cycles of valencies up to equivalence.

Choose the set B : 33333344444444 and proceed to form possible
classes of ordered cycles. In order to avoid superfluous examination we
take in consideration that edges of a 14-gon must fall into pairs. The
edges of a pair are mapped one into another by translation, so in a pair
two edges have ends of the same valencies, in appropriate order. Thus
we enumerate only eligible cycles of valencies.

For valencies 3 take into account one more forbidden situation: neig-
hboring vertices of valency 3 cannot be sent one into another. Now
examine possible groups of consecutive numbers of valencies from six
3 and eight 4. In an eligible cycle the group 333333 is not admissible
because of yielding 5 edges 33 (both ends have valency 3). The arran-
gement of 33333 and a separate 3 as well as the arrangement of 3333
and 33 (both giving 4 edges 33) is not admissible because of the above
mentioned forbidden situation. The arragement of 3333, separate 3,
and 3 is not admissible because of yielding 3 edges 33. The arrange-
ment of 333 and 333 yields 4 edges 33 and leads to some eligible ordered
cycles of valencies:

B1 : 33343334444444, B2 : 33344333444444, B3 : 33344433344444,
B4 : 33344443334444.

The arrangement of 333, 33, and separate 3 yields 3 edges 33 and
is not admissible. The arrangement of 333, seperate 3, 3, and 3 yields
2 neighboring edges 33 and is not admissible. The arrangement of 33,
33, separate 3, and 3 yields 2 edges 33 and can be used in different
combinations with eight vertices of valency 4. Now examine different
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ways to divide 44444444 into four groups. First verify that the arran-
gement of 44444, separate 4, 4, and 4 is not admissible because, for 4
consecutive edges 44, no pairing allows to go round a vertex of valency
4. The arrangement of 4444, 44, separate 4, and 4 yields 4 edges 44
and leads to the following eligible ordered cycles of valencies:

B5 : 33433434434444, B6 : 33433443434444, B7 : 33434334434444,
B8 : 33434433434444, B9 : 33443343434444, B10 : 33443433434444,
B11 : 33443343444434, B12 : 33443433444434, B13 : 33434344334444,
B14 : 33434434334444, B15 : 33443434334444, B16 : 33443434444334,
B17 : 33433434444344, B18 : 33434334444344, B19 : 33434344443344,
B20 : 33433443444434, B21 : 33434433444434, B22 : 33434434444334,
B23 : 33433444434344, B24 : 33434444334344, B25 : 33434444343344,
B26 : 33433444434434, B27 : 33434444334434, B28 : 33434444344334,
B29 : 33443344443434, B30 : 33443444433434, B31 : 33443444434334,
B32 : 33444433434344, B33 : 33444434334344, B34 : 33444434343344,
B35 : 33444433434434, B36 : 33444434334434, B37 : 33444434344334,
B38 : 33444433443434, B39 : 33444434433434, B40 : 33444434434334.

The combinations of the arrangement of 444, 444, separate 4, and
4 with the arrangement of 33, 33, separate 3, and 3 yielding 2 edges 33,
8 edges 34 and 4 edges 44 lead to the following eligible ordered cycles
of valencies:

B41 : 33433434443444, B42 : 33434334443444, B43 : 33434344433444,
B44 : 33433444343444, B45 : 33434443343444, B46 : 33434443433444,
B47 : 33433444344434, B48 : 33434443344434, B49 : 33434443444334,
B50 : 33444334343444, B51 : 33444343343444, B52 : 33444343433444,
B53 : 33444334344434, B54 : 33444343344434, B55 : 33444343444334,
B56 : 33444334443434, B57 : 33444344433434, B58 : 33444344434334.

The combinations of the arrangement of 44, 44, 44, and 44 with the
arrangement of 33, 33, separate 3, and 3 leads to the following eligible
ordered cycles of valencies:

B59 : 33443344344344, B60 : 33443443344344.

If all six vertices of valency 3 are separate, then eight vertices of
valency 4 should be divided into six groups. The arrangement of 44, 44,
and all other separate 4 is not admissible because it yields 2 consecutive
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edges 44. So the arrangement of 44, 44, and all other separate 4 is the
only admissible in this case, and it leads to the following eligible ordered
cycles of valencies:
B61 : 34343434344344, B62 : 34343434434344, B63 : 34343443434344.

Thus all classes of eligible cycles of valencies are enumerated for
the set 14B. For each class of ordered cycles of valencies, we form
all possible adjacency diagrams. Then to every adjacency diagram we
apply the procedure of going round all the vertices of a tile and verify
whether the condition is satisfied. Altogether for the list of 14B, there
are 36 Delone classes of isohedral tilings. Each Delone class is given by
an adjacency symbol.
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Averaging in Multifrequency Systems with

Linearly Transformed Arguments and with

Point and Integral Conditions

Yaroslav Bihun, Roman Petryshyn, Inessa Krasnokuska

Abstract

The multifrequency system of equations with linearly trans-
formed arguments and with point and integral conditions is con-
sidered. The existence and uniqueness of solution of the pro-
blem are investigated. The averaging method is justified based
on evaluation of oscillating integrals and the estimation error of
averaging method for slow variables is obtained.

Keywords: averaging method, multifrequency systems, re-
sonance, linearly transformed argument.

1 The scheme of averaging

Multifrequency systems of ordinary differential equations with initial
and integral conditions were investigated in [1] with averaging met-
hod. Similar problems for differential equations with delay and line-
arly transformed arguments were explored in [2-4]. Averaged system
is more simple, because equation for slow variables a does not depend
on fast variables ϕ.

We consider a system of differential equations

da

dτ
= X(τ, aΛ, ϕΘ),

dϕ

dτ
=
ω(τ)

ε
+ Y (τ, aΛ, ϕΘ), (1)

where τ ∈ [0, L], a ∈ D ⊂ R
n, ϕ ∈ T

m, m > 1, 0 < ε 6 ε0 ≪ 1,
Λ = (λ1, . . . , λr), Θ = (θ1, . . . , θs), λi, θj ∈ (0; 1], aΛ = (aλ1

, ..., aλr
),

aλi
(τ) = a(λiτ), i = 1, r, ϕΘ=(ϕθ1 ,. . ., ϕθs), ϕθj (τ) = ϕ(θjτ), j = 1, s.
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Let us set next conditions for the solutions of system (1)

a(τ0)=a0,

τ2∫

τ1

[ s∑

j=1

bj(τ, aΛ(τ))ϕθj (τ)+g(τ, aΛ(τ), ϕΘ(τ))

]

dτ=d, (2)

where 0 6 τ0 6 L, 0 6 τ1 < τ2 6 L.
Averaged for all fast variables ϕθj system takes form

da

dτ
= X0(τ, aΛ), a(τ0) = a0, (3)

dϕ

dτ
=
ω(τ)

ε
+Y0(τ, aΛ),

τ2∫

τ1

[ s∑

j=1

bj(τ, aΛ(τ))ϕθj
(τ)+g0(τ, aΛ(τ))

]

dτ=d. (4)

Let SR = {a :‖a − a0‖6 R}, max
[0,L]×Sr

R

‖X0(τ, aΛ)‖ 6 σ.

Theorem 1. Let us suppose that function X(τ, aΛ) is continuous with
set of variables in the area [0, L]× Sr

R, satisfies Lipschitz condition for
variable aΛ with constant α > 0 and σL 6 R, αrL < 1. Then solution
of the problem (3), (4) exists and is unique.

2 Conditions and justification of the averaging

method

Let G := [0, L] ×Dr, G1 := G × Tms, f := (X,Y, g). Let us suppose
that

10. f ∈ C
2
aΛ
(G1, σ), f ∈ C

1
τ (G1, σ), where norms of function f and

its derivatives is limited with σ.
20. f ∈ C

mr+1
ϕΘ

(G1, σ).
30. bi ∈ C

2(G,βi), j = 1, s.
40. ω ∈ C

ms−1([0, L], σ) and Wronskian V (τ), built with system of
functions

{
ω(θ1τ), . . . , ω(θsτ)

}
is not 0 for τ ∈ [0, L].

50. There is unique solution of the problem (3), (4) that is lying in
area D with some ρ-neighborhood.
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60. Matrixes

I −

s∑

j=1

τ0∫

0

∂X0(τ, aΛ(τ, y))

∂aλj

∂aλj
(τ, y)

∂y
dτ and

s∑

j=1

τ2∫

τ1

bj(τ, aΛ(τ))dτ

are invertible.
Condition 30 provides that solution of system (3) goes through small

neighborhood of the resonance. The condition of the resonance for τ ∈

[0, L] have the form [2, 3]
s∑

j=1

θj(kj , ω(θjτ)) = 0, kj ∈ Z
m,

s∑

j=1

‖kj‖ 6= 0.

Theorem 2. Let us suppose that conditions 10–60 are satisfied. Then
for small enough ε the unique solution of problem (1), (2) exists and
for all τ ∈ [0, L] and ε ∈ (0, ε0] performs evaluation

‖a(τ, y + µ(ε), ψ + ξ(µ(ε), ε), ε) − a(τ, y)‖+

‖ϕ(τ, y + µ(ε), ψ + ξ(µ(ε), ε), ε) − ϕ(τ, y, ψ, ε)− η(ε)‖ 6 c1ε
α,

where α = (rm)−1, η ∈ R
m and ‖η(ε)‖ 6 c2ε

α−1.
The evaluation for the intergal

Ik(τ, ε) =

τ∫

0

f(z, ε) exp

(
i

ε

z∫

0

γk(t)dt

)

dz

that corresponds system (1) was used for theorem proving.
In [2] there was shown that

‖Ik(τ, ε)‖ 6 c3

(

sup ‖f(t, ε)‖ +
1

‖k‖
sup

∥
∥
∥
∥
df

dt

∥
∥
∥
∥

)

,

where c3 > 0 and does not depend on ε and k.
Remark 1. The result of theorem 1 is correct also for multif-

requency system (1), (2) with linearly transformed arguments λi :
[0, L] → [0, L], θj : [0, L] → [0, L] where λ′i(τ) 6= 0 and θ′j(τ) 6= 0

for τ ∈ [0, L], i = 1, r, j = 1, s. The condition 40 is formulating
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for the determinant V (τ) with the vectors ωT (τ), ωT (θ1(τ))θ
′

1(τ), . . . ,
ωT (θs(τ))θ

′

s(τ) in first row, T means transposition. For instance, for
m = s = 1 condition 40 takes the form

det

[
ω(τ) ω(θ(τ))θ′(τ)

ω′(τ) ω′(θ(τ))
(
θ′(τ)

)2
+ ω(θ(τ))θ′′(τ)

]

6= 0, τ ∈ [0, L].

Remark 2. If condition 40 is not satisfied in points τν , ν = 1, ρ
and the multiplicity of roots of the equation V (τ) = 0 is limited by the
number q ≥ 1, then theorem 1 can be proved also in this case.

Let us apply the proving scheme suggested in [1] for ordinary dif-
ferential equations and in [2] for system of differential equations with
linearly transformed arguments. Herewith the error of averaging met-
hod for slow variables takes the form ‖a(τ, ε) − a(τ)‖ ≤ cεβ , where
β = (rm+ q)−1, c = const > 0.
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Phase portraits of cubic differential systems with

invariant straight lines of total multiplicity eight

Cristina Bujac, Nicolae Vulpe

Abstract

In this article for the family of cubic differential systems with
eight invariant straight lines considered with their multiplicities
all the phase portraits were constructed. For such systems the
classification according to the configurations of invariant lines in
terms of affine invariant polynomials were done in [1–5] and all
possible 51 configurations were constructed. For each one of the
51 such classes we perform its corresponding phase portraits and
prove that only 30 such phase portraits are topologically distinct.

Keywords: Cubic differential system, phase portrait, confi-
guration of invariant lines, group action, affine invariant polyno-
mial.

1 Introduction

In the article [6] for the family of cubic differential systems with the
maximum number of invariant straight lines, i.e. 9 (considered with
their multiplicities), all the phase portraits were constructed. Our pa-
per is a continuation of [6] and namely, here we consider the phase
portraits of the class CSL8 of cubic systems possessing invariant lines
of total multiplicity 8 (including the line at infinity).

Our work is based on the results obtained in [1–5], where for systems
in CSL8 the classification according to the configurations of invariant
lines in terms of affine invariant polynomials was done. As a result
there was proved the existence of exactly 51 distinct configurations of
invariant lines as well as the necessary and sufficient conditions of the
realization of each one of them.

c©2017 by Cristina Bujac, Nicolae Vulpe
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2 Main results

Main Theorem. Consider a non-degenerate cubic system and assume

that it belongs to the family CSL8, i.e. it possesses one of the 51 possible

configurations of invariant lines Config. 8.j (j = 1, . . . , 51) detected in

[1–5]. Then:

(A) the phase portrait of this system correspond to one of the 52

phase portraits P. 8.1–P. 8.5, P. 8.6(a), P. 8.6(b), P. 8.7–P. 8.51 given

in Figure 2;

(B) among 52 phase portraits given in Figure 2 there are exactly

30 topologically distinct phase portraits as it is indicated in Diagram 2

using the geometric invariants defined in Remark 1. Moreover applying

the algebraic theory of invariants the necessary and sufficient conditions

for the realization of each one of the detected 30 topologically distinct

phase portraits where established.

Remark 1. In order to distinguish topologically the phase portraits of

the systems we obtained, we use the following geometric invariants:

• The number ISR of real infinite singularities.

• The number FSR of real finite singularities.

• The number Sep f of separatrices associated to finite singularities.

• The number Sep∞ of separatrices associated to infinite singula-

rities.

• The number FSep of separatrices connecting finite singularities.

• The number SC of separatrix connections.

• The maximum number ES∞ of elliptic sectors in the vicinity of

an infinite singularity.

Acknowledgments. The project 15.817.02.03F from SCSTD of
ASM has supported part of the research for this paper.
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Figure 1. Phase portraits of systems in CSL8.
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Figure 2 (continuation). Phase portraits of systems in CSL8.
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Phase portraits of cubic systems with 8 invariant lines

Diagram 1. Topologically distinct phase portraits
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Up continuity

Huseyin Cakalli

Abstract

In this paper, we introduce and investigate the concept of up
continuity. It turns out that the set of up continuous functions
is a proper subset of the set of continuous functions.
Keywords: Sequences, series, summability, continuity.

1 Introduction

Using the idea of continuity of a real function in terms of sequences,
many kinds of continuities were introduced and investigated, not all but
some of them we recall in the following: slowly oscillating continuity
([7], [15]), quasi-slowly oscillating continuity ([9]), ward continuity ( ,
[1], [8]), strongly lacunary ward continuity ([5], [10]), which enabled
some authors to obtain conditions on the domain of a function to be
uniformly continuous in terms of sequences in the sense that a function
preserves a certain kind of sequences (see for example [15, Theorem
6],[1, Theorem 1 and Theorem 2],[9, Theorem 2.3].

The purpose of this paper is to introduce the concepts of up com-
pactness of a subset of the set of real numbers and up continuity of a
real function, which cannot be given by means of a sequential method
G and prove interesting theorems.

2 Up continuity

A sequence (αk) in R is called upward half Cauchy if for each ε > 0
there exists an n0 ∈ N so that αn − αm < ε for m ≥ n ≥ n0 ([12]).

c©2017 by Huseyin Cakalli
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Definition 1. A subset E ofR is called up compact, if any sequence
of points in E has an upward half Cauchy subsequence.

Theorem 1. A subset of R is up compact if and only if it is bounded
below.

It follows from the above theorem that if a closed subset A of R
is up compact, and −A is up compact, then any sequence of points in
E has a (Pn, s)-absolutely almost convergent subsequence (see [4], [16],
and [17]).

Known results for continuity for real functions in terms of sequences
might suggest to us introducing a new type of continuity, namely, up
continuity.

Definition 2. A function f : E → R is called up continuous on
a subset of R, if it preserves upward half Cauchy sequences, i.e. the
sequence (f(αn)) is upward half Cauchy whenever (αn) is an upward
half Cauchy sequence of points in E.

We see that the sum of two up continuous functions is up continu-
ous.

Theorem 2. Any up continuous function is continuous.

Theorem 3. Up continuous image of any up half compact subset of
R is up half compact.

Theorem 4. If (fn) is a sequence of up continuous functions defined
on a subset E of R and (fn) is uniformly convergent to a function f ,
then f is up continuous on E.

3 Conclusion

In this paper, we have obtained results related to up compactness, and
up continuity, and some other kinds of continuities via upward half Cau-
chy sequences, convergent sequences, statistical convergent sequences,
lacunary statistical convergent sequences of points in R. It turns out
that the set of up continuous functions is a proper subset of the set of
ordinary continuous functions. The term upward half Cauchy sequence
can be considered to be associated with below boundedness of the un-
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derlying space, whereas the term Cauchy sequence is traditionally as-
sociated with the completeness of the underlying space. We suggest to
investigate upward half Cauchy sequences of fuzzy points in asymmetric
fuzzy spaces (see [11], for the definitions and related concepts in fuzzy
setting). We also suggest to investigate upward half Cauchy double
sequences (see for example [13] for the definitions and related concepts
in the double sequences case). For another further study, we suggest to
investigate upward half Cauchy sequences of points in an asymmetric
cone metric space since in a cone metric space the notion of an upward
half Cauchy sequence coincides with the notion of a Cauchy sequence,
and therefore up continuity coincides with continuity (see [14] ).

References

[1] D. Burton, J. Coleman. Quasi-Cauchy sequences, Amer. Math.
Monthly, vol. 117 (2010), pp. 328–333.

[2] J. Collins and J. Zimmer. An asymmetric Arzel-Ascoli theorem,
Topology and its Applications, vol. 154 (2007), pp. 2312–2322.

[3] J. Connor and K.G. Grosse-Erdmann. Sequential definitions of
continuity for real functions, Rocky Mountain J. Math., vol. 33,
no 1 (2003), pp. 93–121.
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[8] H. Çakalli. Forward continuity, J. Comput. Anal. Appl., vol. 13
(2011), pp. 225–230.

[9] I. Canak and M. Dik. New types of continuities, Abstr. Appl.
Anal., vol. 2010 (2010), Article ID 258980, 6 pages.
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Linear Stochastic Differential Equations and

Nonautonomous Dynamical Systems

David Cheban

Abstract

We prove that the linear stochastic equation dx(t) = (Ax(t)+
f(t))dt + g(t)dW (t) (*) with linear operator A generating a C0-
semigroup {U(t)}t≥0 and Levitan almost periodic forcing terms f
and g admits a unique Levitan almost periodic [3,ChIV] solution
in distrution sense if it has at least one precompact solution on
R+ and the semigroup {U(t)}t≥0 is asymptotically stable.

Keywords: Levitan almost periodic solutions, linear sto-
chastic differential equations.

1 Introduction

In this short communication we study the problem of existence of Le-
vitan almost periodic solutions of equations (*), where A is generator
of strongly asymptotically stable C0-semigroup on a Banach space E
and f, g :→ E are some Levitan almost periodic functions.

In the deterministic case (g = 0) the problem of Bohr almost peri-
odicity (respectively, almost automorphy) of solutions of equation (*)
was studied in the works of S. Zaidman [2] (for Bohr almost periodic
equations) and M. Zaki [3] (for almost automorphic equations).

2 Semigroup of operators

Let (E, | · |) be a Banach space with the norm | · | and [E] be a Banach
space of linear bounded operators A acting on the space A equipped
with the norm ||A|| := sup{|Ax| : |x| ≤ 1}.

c©2017 by David Cheban
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A C0-semigroup {U(t)}t≥0 is said to be asymptotically stable if
lim

t→+∞

U(t)x = 0 for any x ∈ E.

Theorem 1.[1,ChI] The following statements are equivalent:

1. the C0-semigroup {U(t)}t≥0 is asymptotically stable;

2. lim
t→+∞

sup
x∈K

|U(t)x| = 0 for any compact subset K ⊂ E;

3. equation x′(t) = Ax(t)

(a) admits a compact global attractor J ;

(b) does not admit any solution defined on R with precompact

range, i.e., J = {0}.

Let (X, ρ) be a compete metric space. Denote by C(R,X) the fa-
mily of all continuous functions f : R 7→ X equipped with the distance
d(f, g) := sup

l>0
dl(f, g), where dl(f, g) := min{max

|t|≤l
ρ(f(t), g(t)); l−1}.

The metric d is complete and it defines on C(R,X) the compact-open
topology. Let h ∈ R denote by fh the h-translation of f , that is,
fh(s) := f(s+ h) for all s ∈ R.
Definition 1. A function f ∈ C(R,X) is said to be Bohr almost

periodic if for any ε > 0 there exists a positive number L = L(ε) such

that T (ε, f)
⋂
[a, a + L] 6= ∅ for any a ∈ R, where T (ε, f) := {τ ∈ R :

ρ(f(t+ τ), f((t))) < ε for any t ∈ R}.

Definition 2. Function f ∈ C(R,X) is called Levitan almost pe-

riodic if there exists a metric space Y and a Bohr almost perio-

dic function F ∈ C(R, Y ) such that for arbitrary ε > 0 there ex-

ists a positive number δ = δ(ε) such that T (δ, F ) ⊆ T(ε, f), where

T(ε, f) := {τ ∈ R : max
|t|≤1/ε

ρ(f(t+ τ), f(t)) < ε}.

Remark 1. 1.Every Bohr almost periodic function is Levitan almost

periodic.

2.The functions f(t) = (2 + cos t+ cos
√
2t)−1 and g(t) = cos(f(t))

(t ∈ R) are Levitan almost periodic, but not Bohr almost periodic

[3,ChIV].
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3 Linear Stochastic Differential Equations

Let (H, | · |) be a real separable Hilbert space, (Ω,F ,P) be a probability
space, and L2(P,H) be the space of H-valued random variables x such
that E|x|2 :=

∫

Ω

|x|2dP < ∞. Then L2(P,H) is a Hilbert space equipped

with the norm ||x||2 :=
( ∫

Ω

|x|2dP
)1/2

.

Consider the following linear stochastic differential equation

dx(t) = (Ax(t) + f(t)dt+ g(t)dW (t), (1)

where A is an infinitesimal generator which generates a C0-semigroup
{U(t)}t≥0, f, g ∈ C(R,H) and W (t) is a two-sided standard one-
dimensional Brownian motion defined on the probability space (Ω,F ,P).
We set Ft := σ{W (u) : u ≤ t}.

Recall that an Ft-adapted processes {x(t)}t∈R is said to be a mild
solution of equation (1) if it satisfies the stochastic integral equation

x(t) = U(t− t0)x(t0) +

∫ t

t0

U(t− s)f(s)ds+

∫ t

t0

U(t− s)g(s)dW (s),

for all t ≥ t0 and each t0 ∈ R.
Let P(H) be the space of all Borel probability measures on H endo-

wed with the weak topology. It is well known that on the space P(H)
there is a distance which defines this topology.
Definition 3. Let ϕ : R → E be a mild solution of equation (1).
Then ϕ is called Levitan almost periodic in distribution if the function

φ ∈ C(R,P(H)) is Levitan almost periodic, where φ(t) := L(ϕ(t)) for

any t ∈ R and L(ϕ(t)) ∈ P(H) is the law of random variable ϕ(t).

Theorem 2. Suppose that the following conditions are fulfilled:

a. the C0-semigroup {U(t)}t≥0 is asymptotically stable;

b. the functions f, g ∈ C(R,H) are Levitan almost periodic;

c. equation (1) admits a solution ϕ defined on R+ with precompact

range, i.e., the set Q := ϕ(R+) is compact.
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Then equation (1) has a unique solution p defined on R with pre-

compact range which is Levitan almost periodic in distribution sense

and lim
t→+∞

|ϕ(t) − p(t)| = 0.

To prove this statement we use some ideas, methods and results
from the theory of nonautonomous (cocycle) dynamical systems [1].
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Decomposition of multiparameter linear

singularly perturbed systems

Igor Cherevko, Oleksandra Osypova

Abstract

We investigate a system of linear singularly perturbed diffe-
rential equations with plenty of small parameters. The algorithm
of the decomposition scheme contains k steps of a successive split-
ting based on the integral manifold of quick and slow variables
method. The splitting substitution is defined constructively in
the form of expansions by powers of small parameters.

Keywords: linear singularly perturbed systems, decomposi-
tion, asymptotic decomposition, integral manifolds.

1 Introduction

Constructive methods of decomposition of singularly perturbed sys-
tems, which are based on the ideas of the integral manifold method,
were developed in the works [1-2]. These methods are effective only in
cases where we can find precisely or approximately integral manifold.
For singularly perturbed systems we can build integral manifolds in
the form of expansion by powers of small parameters [3-4]. For linear
singularly perturbed systems method of integral manifolds allows us
to perform the splitting transformation of input system to indepen-
dent fast and slow subsystems [5]. In this study we consider linear
singularly perturbed systems with several small parameters [6].

c©2017 by Igor Cherevko, Oleksandra Osypova
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2 Main results

Consider a linear singularly perturbed system given by

i∏

j=0

εj ẋi =

k∑

j=0

Aijxj , i = 0, k, (1)

where t ∈ R, xi ∈ R
ni , Aij = Aij(t), i, j = 0, k, are ni × nj matrices,

ε0 = 1, ε1, ε2, . . . , εk are small positive parameters.
Let the following conditions be true:
1) matrices Aij(t), i, j = 0, k, are uniformly bounded in t ∈ R,
2) eigenvalues of λj = λj(t), j = 1, nk, of the matrix Akk(t) satisfy

the inequality
Reλj(Akk) ≤ −2β < 0.

The decomposition of system (1) will be performed in k steps. At
each step (l + 1), l = 0, k − 1, the substitution is made as follows






yli = yl+1

i +
k−l∏

j=i+1

εjH
l+1

i yl+1

k−l, i = 0, k − l,

ylk−l =
k−l−1∑

i=0

P l+1

i yli + yl+1

k−l,

(2)

where y0i = xi.
We obtain the block-diagonal system






ẏk
0
= Bk

00
yk
0
,

i∏

j=0

εj ẏ
k−i+1

i = Bk−i+1

ii yk−i+1

i , i = 1, k,
(3)

Theorem 1. Let conditions 1)-2) be true. Then for sufficiently
small parameters εi, i = 1, k, there exists a nonsingular substitution

(x0, x1, x2, . . . , xk)
T = Φ

(
yk
0
, yk

1
, yk−1

2
, . . . , y1k

)T

,

which transforms system (1) to (k + 1) independent subsystems (3).
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Theorem 2 [8]. Let the conditions 1), 2) be true and let matrices
Bl

ij(i, j = 0, k − l), (Bl
k−l,k−l)

−1 and their (n + 1) derivatives be uni-
formly bounded in t ∈ R. Then for sufficiently small εl there exists a

substitution (2), which transforms system
i∏

j=0

εj ẏ
l
i =

k−l∑

j=0

Bl
ijy

l
j, i =

0, k − l, to the form






i∏

j=0

εj ẏ
l+1

i =

k−l−1∑

j=0

Bl+1

ij yl+1

j , i = 0, k − l − 1,

k−l∏

j=0

εj ẏ
l+1

k−l =Bl+1

k−l,k−ly
l+1

k−l,

(4)

and the coefficients of the asymptotic decomposition of the transfor-
mation can be uniquely found by

P l+1

i,0 (t) = −(Bl
k−l,k−l)

−1(t)Bl
k−l,i(t),

P l+1

i,j (t) = (Bl
k−l,k−l)

−1(t)

(
k−l−1∏

m=1

εmṖ l+1

i,j−1
(t)+

+
k−l−1∑

m=0

k−l−1∏

s=m+1

εs
j−1∑

s=0

P l+1
m,sB

l
m,k−lP

l+1

i,j−s−1
+

+
k−l−1∑

m=0

k−l−1∏

s=m+1

εsP
l+1

m,j−1
Bl

mi

)

, j = 1, n,

(5)

and
H l+1

i,0 = Bi,k−l(B
l
k−l,k−l)

−1,

H l+1

i,j =

(
k−l−1∑

m=0

k−2∏

s=m+1

εsB
l
imH l+1

m,j−1
+

+
k−l−1∑

m=0

k−l−1∏

s=m+1

εs
j−1∑

s=0

H l+1

i,s P l+1

m,j−s−lB
l
m,k−l+

+
k−l−1∑

m=0

k−l−1∏

s=m+1

εsB
l
i,k−l

j−1∑

s=0

P l+1
m,sH

l+1

m,j−1−s−

−
k−l−1∏

m=0

εmḢ l+1

i,j−1

)

(Bl
k−l,k−l)

−1, j = 1, n.

(6)
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3 Conclusion

By completing k steps of the decomposition of system (1) by the scheme
described above, we obtain block-diagonal system (3). Moreover, the
coefficients of the asymptotic decomposition of the transformation can
be found by recurrent algebraic relations analogous to (5), (6).
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The Lyapunov quantities and the

GL(2,R)-invariant center conditions for a class

of bidimensional polynomial systems of

differential equations with nonlinearities of the

fourth degree

Stanislav Ciubotaru, Iurie Calin

Abstract

For the bidimensional polynomial systems of differential equa-
tions with nonlinearities of the fourth degree the recurent equa-
tions for determination of the Lyapunov quantities were establis-
hed. Moreover, the general form of Lyapunov quantities for the
mentioned systems were obtained. For a class of such systems
the necessary and sufficient GL(2,R)-invariant conditions for the
existence of center are given.

Keywords: Polynomial differential systems, invariant, comi-
tant, transvectant, Lyapunov quantities, center conditions.

1 Definitions and notations

Let us consider the system of differential equations with nonlinea-
rities of the fourth degree

dx

dt
= P1(x, y) + P4(x, y),

dy

dt
= Q1(x, y) +Q4(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degree i in x
and y with real coefficients.

c©2017 by Stanislav Ciubotaru, Iurie Calin
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The goal of this paper is to determine the invariant [1, 2] recurent
formulas for construction the Lyapunov quantities for the system (1)
and to establish the invariant center conditions for a class of these
systems.

Definition. [3] Let ϕ and ψ be homogeneous polynomials in coor-

dinates of the vector (x, y) ∈ R
2 of the degrees ρ1 and ρ2, respectively.

The polynomial

(ϕ,ψ)(j) =
(ρ1 − j)!(ρ2 − j)!

ρ1!ρ2!

j∑

i=0

(−1)i
(
j

i

)
∂jϕ

∂xj−i∂yi
∂jψ

∂xi∂yj−i

is called the transvectant of index j of polynomials ϕ and ψ.
If the polynomials ϕ and ψ are GL(2,R)-comitants [1, 2] of the

system (1), then the transvectant of the index j ≤ min(ρ1, ρ2) is also a
GL(2,R)-comitant of the system (1) [4].

GL(2,R)-comitants of the first degree with respect to coefficients
of system (1) have the form

Ri = Pi(x, y)y −Qi(x, y)x, Si =
1

i

(
∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)

, i = 1, 4.

By using the comitants Ri and Si (i = 1, 4), and the notion of
transvectant the following GL(2,R)-comitants and invariants of the
system (1) were constructed:

I2 = (R1, R1)
(2), K1 = (S4, R1)

(1), K2 = ((S4, R1)
(2), R1)

(1),

I3 = (((S4, R1)
(2), R1)

(1), (S4, R1)
(2))(1),

I4 = ((((R4, R1)
(2), R1)

(2), R1)
(1), ((R4, R1)

(2), R1)
(2))(1),

K3 = (R4, S4)
(3), K4 = (K2

3 , S4)
(3), K5 = ((K3, S4)

(2), R1)
(2),

I5 = (((R4, S4)
(2), R1)

(2), R1)
(2), I6 = (K4,K5)

(1)

2 Lyapunov quantities for systems (1) with

S1 = 0, I2 6= 0

We will consider the system (1) with the conditions S1 = 0, I2 > 0,
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which has the center or focus at (0, 0). In these conditions system (1)
can be reduced to the system

dx

dt
= y + P4(x, y),

dy

dt
= −x+Q4(x, y), (2)

and can be written [5] in the form

dx

dt
=

1

2

∂R1

∂y
+

1

5

∂R4

∂y
+

4

5
S4x,

dy

dt
= −

1

2

∂R1

∂x
−

1

5

∂R4

∂x
+

4

5
S4y, (3)

where R1 = x2 + y2.
Let us consider the formal power series of the form

F (x, y) = x2 + y2 +

∞∑

j=3

Fj(x, y)

where for each j, Fj(x, y) is a homogeneous polynomial of degree j, so
that the derivative of F (x, y) along the solutions of the system (2) (or
(3)) satisfies

dF (x, y)

dt
=

∞∑

k=2

G2k(x
2 + y2)k,

where G2k are the polynomials of the coefficients of the system (2),
called Lyapunov quantities [6].

For establishing the center conditions for the system (2) we will de-
termine Lyapunov quantities. Polynomials Fj(x, y) and constants G2k

can be determined from the infinite dimensional system of differential
equations in partial derivatives:

(3m+ 2)(F3m+2, R1)
(1) + (3m− 1)W (F3m−1) =

=






0, for m = 2l − 1, l ∈ N
∗,

G3m+2R
3m+2

2

1
, for m = 2l, l ∈ N

∗,

(4)

where F2 = R1, W (Fj) = (Fj , R4)
(1) +

4

5
FjS4.
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From the system (4) it follows that only the homogeneous polynomi-
als F3m−1(x, y),m ∈ N

∗ and the Lyapunov quantities G6l+2, l ∈ N
∗ par-

ticipate in solving the center-focus problem for the system (1). By sol-
ving consecutively the equations of system (4) the polynomials F3m−1

and respectively the Lyapunov quantities G6l+2, are determined. The
general form of the polynomials F3m−1, m ∈ N

∗ and respectively, the
general form of the Lyapunov quantities G6l+2, l ∈ N

∗, are the follo-
wing:

F3m+2 =

=

[ 3m+1
2 ]

∑

j=0

(3m− 1) · (3m+ 2)! · 2j+1 · R
j
1
· [[W (F3m−1),

j
︷ ︸︸ ︷

R1)
(2)

, . . . , R1)
(2)

, R1)
(1)

(3m− 2j + 1)! ·
j∏

i=0

(

(3m− 2i+ 2)
2
· (R1, R1)

(2)

) ,

G6l+2 =
(6l − 1) · (6l + 2)! · 23l+1 · [[W (F6l−1),

3l+1

︷ ︸︸ ︷

R1)
(2)

, . . . , R1)
(2)

3l∏

i=0

(

(6l − 2i+ 2)
2
· (R1, R1)

(2)

) , (5)

where m ∈ N
∗, l ∈ N

∗, W (Fi) = (Fi, R4)
(1) +

4

5
FiS4.

Noted that when m = 2l − 1, l ∈ N
∗, the respectively equations of

the system (4) have a unique solution with respect to F3m+2, i.e. in this
case F3m+2 are determined unambiguously. In the case m = 2l, l ∈ N

∗,
the solutions of respectively equations of the system (4) with respect

to F3m+2 are determined with accuracy to a term of the form CR
3m+2

2

1
,

where C is an arbitrary real constant. This implies that Lyapunov
quantities G6l+2, l ∈ N

∗, are not determined unambiguously.

3 The GL(2,R)-invariant center conditions for

a class of systems (1) with S1 = 0, I2 > 0,

I3 = I4 = 0

We will consider the system (3) (or (1)) with the conditions S1 = 0,
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I2 > 0, which has the center or the focus at (0, 0).
If R4 ≡ 0, then the system (3) (or (1)) with S1 = 0 and I2 > 0 has

the singular point of the center type at the origin of coordinates. In
this case the system (3) has the invariant algebraic curve

H(x, y) = 32R1 ·K2 + 8I2 ·K1 − 5I22 = 0

and the first integral

|H|
2

3 · |R1|
−1 = c1,

where c1 is a real constant [7].
If S4 ≡ 0, then the system (3) (or (1)) with S1 = 0 and I2 > 0 has

the singular point of the center type at the origin of coordinates. In
this case the system (3) has the first integral:

5R1 + 2R4 = c2,

where c2 is a real constant.
For the system (1) with S1 = 0, I2 > 0 and I3 = I4 = 0 were es-

tablished the GL(2,R)-invariant conditions for distinguishing between
center and focus.

Theorem 1. The system (1) with the conditions S1 = 0, I2 > 0
and I3 = I4 = 0 has the center in the origin of the coordinates if and

only if the following conditions are fulfilled

G8 = G26 = G32 = G38 = 0,

where G8, G26, G32 and G38 are Lyapunov quantities of respectively

indices.

Theorem 2. The system (1) with the conditions S1 = 0, I2 > 0
and I3 = I4 = 0 has the center in the origin of the coordinates if and

only if the following conditions are fulfilled

I5 = I6 = 0.

Acknowledgments. This article was partially supported by the
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sian).

[3] G. B. Gurevich. Foundations of the Theory of Algebraic Invariants.
Noordhoff, Groningen, 1964.

[4] D. Boularas, Iu. Calin, L. Timochouk, N. Vulpe. T-comitants of quadra-

tic systems: A study via the translation invariants, Report 96-90, Delft
University of Technology, Faculty of Technical Mathematics and Infor-
matics, 1996, pp. 1–36.

[5] Iu. Calin. On rational bases of GL(2,R)-comitants of planar polynomial

systems of differential equations. Buletinul Academiei de Stiinte a Repu-
blicii Moldova. Matematica, 2003, nr. 2(42), pp. 69–86.

[6] V. V. Amelkin, N. A. Lucashevich, A. P. Sadovski. Nonlinear variation

in systems of the second order. Minsk, 1982 (in Russian).

[7] V. Baltag, Iu. Calin. The transvectants and the integrals for Darboux sys-

tems of differential equations. Buletinul Academiei de Stiinte a Republicii
Moldova. Matematica, 2008, nr. 1(56), pp. 4–18.

Stanislav Ciubotaru1, Iurie Calin1,2

1Institute of Mathematics and Computer Science of ASM
2Moldova State University, Chişinău
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Integrability conditions for a cubic differential

system with a bundle of two invariant straight

lines and one invariant cubic

Dumitru Cozma, Anatoli Dascalescu

Abstract

For a cubic differential system with a bundle of two invariant
straight lines and one invariant cubic it is proved that a weak
focus is a center if and only if the first three Lyapunov quantities
Lj , j = 1, 3 vanish.

Keywords: Cubic differential system, center-focus problem,
invariant algebraic curve, Lyapunov quantity, integrability.

1 Introduction

In this paper we consider the cubic system of differential equations

ẋ = y + ax2 + cxy + fy2 + kx3 +mx2y + pxy2 + ry3≡P (x, y),

ẏ = −(x+ gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3)≡Q(x, y),
(1)

in which all variables and coefficients are assumed to be real. The
origin (0, 0) is a singular point of a center or a focus type for (1), i.e. a
weak focus. The goal of this paper is to solve the problem of the center
for cubic system (1) with a bundle of two invariant straight lines and
one invariant cubic curve.

The problem of the center for cubic system (1) with four invariant
straight lines, three invariant straight lines, two invariant straight lines
and one invariant conic was solved in [1]; with two parallel invariant
straight lines and one invariant cubic was solved in [3].

c©2017 by Dumitru Cozma, Anatoli Dascalescu
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2 The existence of a bundle of two invariant

straight lines and one invariant cubic

Let the cubic system (1) have two invariant straight lines l1, l2 that
are real or complex (l2 = l1) intersecting at a point (x0, y0). The inter-
section point (x0, y0) is a singular point for (1) and has real coordinates.
Without loss of generality we can take l1 ∩ l2 = (0, 1). In this case the
invariant straight lines can be written as

lj ≡ 1 + ajx− y = 0, aj ∈ C, j = 1, 2; a2 − a1 6= 0. (2)

In [2] it was proved that the straight lines (2) are invariant for (1)
if and only if the following coefficient conditions are satisfied:

f = −2, k = (a− 1)(a1 + a2) + g, l = −b, s = (1− a)a1a2,
m = −a2

1
− a1a2 − a2

2
+ c(a1 + a2)− a+ d+ 2, r = 1,

n = −d− 1, p = b− c, q = (a1 + a2 − c)a1a2 − g.
(3)

Next for cubic system (1) we find conditions for the existence of
one invariant cubic passing through the same singular point (0, 1), i.e.
forming a bundle with the lines l1 and l2 (a03 = −1).

Φ(x, y) ≡ x2 + y2 + a30x
3 + a21x

2y + a12xy
2 − y3 = 0, (4)

where (a30, a21, a12) 6= 0 and a30, a21, a12 ∈ R.

The cubic (4) is an invariant curve for (1) if and only if there exist
numbers c20, c11, c02, c10, c01 ∈ R such that

P (x, y)
∂Φ

∂x
+Q(x, y)

∂Φ

∂y
≡ Φ(c20x

2 + c11xy+ c02y
2 + c10x+ c01y). (5)

Identifying the coefficients of xiyj in (5), we find that c10 = 2a −

a21, c01 = a12 − 2b, d = (3a21 − 2a − 1)/2, g = (3a30 − 3a12 + 2b +
2c)/2, c11 = (5a21 + 2ca12 − 2a2

12
+ 3 − 6a)/2, c02 = 3b − a12, c20 =

[2c(a2
12
+2a21)− 2a12(a

2

12
+3a21)+3a30++a12(2a− 11+2(a1 +a2)

2−

2a1a2 − 2c(a1 + a2)) + 6(b+ c(a1a2 + 1)− a1a2(a1 + a2))]/2
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and a30, a21, a12 are the solutions of the following system

F50 ≡ −ca30(a
2

12
+ 2a21) + (a21a1a2 − a12a30)(a− 1)+

a30(a
3

12
+ 3a12a21 + 3a30) + 3a30(a1 + a2)(a1a2 + a− 1)+

a12a30((a+ 1 + a2)(c− a1 − a2) + a1a2)− 3ca30a1a2 = 0,

F41 ≡ a2
12
(a12 + a30 − ca21) + a2

21
(3a12 − 2c) + a30(5a21 − ca12)+

2a21(a1 + a2)(a1a2 − 1 + a)− 2a1a2(ca21 − a12(a− 1))−
(a12a21 + 3a30)(a− 1− a1a2 + (a1 + a2)(a1 + a2 − c)) = 0,

F32 ≡ a12(a1a2 + a− 1)(a1 + a2) + a1a2(3− 3a− ca12)−
c(a3

12
+ 3a12a21 + 3a30) + a4

12
+ 4a2

12
a21 + 4a12a30 + 2a2

21
−

(a2
12

+ 2a21)(a− 1− a1a2 + (a1 + a2)(a1 + a2 − c)) = 0,
F40 ≡ 2a2

12
(a12 − c) + a21(9a12 − a30 − 2b− 6c)− 2(b+ c)+

a12(5− 2a+ 2c(a1 + a2)− 2(a1 + a2)
2 + 2a1a2)+

4(a1 + a2)(a− 1) + 6a1a2(a1 + a2 − c) + a30(2a+ 3) = 0,

F31 ≡ 2a(a21 + 2a1a2 − 1) + (a12 − a30)(8a12 − 4b)− a2
21
+

2c(2a1 + 2a2 − 3a12 + 3a30)− 4(a1 + a2)
2 + 2a21 + 3 = 0,

F22 ≡ a2
12
(c− a12) + a12((a1 + a2)

2 − a1a2 − c(a1 + a2))−
b(a21 + 1)− a1a2(a1 + a2 − c) = 0.

(6)

Let us denote j1 = a12(a1 + a2) − 3a1a2 − a2
12

− 2a21, j2 = a3
2
−

a2
2
a12 − a2a21 − a30, j3 = a3

1
− a2

1
a12 − a1a21 − a30, j4 = 4a3

12
a30 −

a2
12
a2
21

+ 18a12a21a30 − 4a3
21

+ 27a2
30
.

Theorem 1.The system of algebraic equations (6) is compatible if and
only if j1j2j3j4 = 0.

We study the compatibility of (6) when a1 − a2 6= 0, a − 1 6= 0,
(a30, a21, a12) 6= 0 and divide the investigation into four cases:
{j1 = 0}, {j1 6= 0, j2 = 0}, {j1j2 6= 0, j3 = 0}, {j1j2j3 6= 0, j4 = 0}.
The solutions of (6) with respect to a30, a21, a12 give us the con-

ditions under which the cubic system (1) has at least one irreducible
invariant cubic. There were obtained 22 sets of necessary and suffi-
cient conditions for cubic system (1) to have a bundle of two invariant
straight lines and one invariant cubic.

We compute the first three Lyapunov quantities for each set of
conditions and establish the cyclicity of the weak focus.
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3 The problem of the center

The solution of the problem of the center for cubic differential system
(1) with a bundle of two invariant straight lines and one invariant cubic,
is given in the following two theorems:
Theorem 2. Let the cubic system (1) have a bundle of two invariant
straight lines l1 = 0, l2 = 0 and one invariant cubic Φ = 0, then (0, 0)
is a center if and only if the first three Lyapunov quantities vanish.
Theorem 3. The cubic system (1) with a center having a bundle of two
invariant straight lines and one invariant cubic is Darboux integrable.

Assuming that the first three Lyapunov quantities vanish, there
were obtained 18 sets of conditions for (0, 0) to be a center.

4 Conclusion

For a cubic differential system with a weak focus, having a bundle of
two invariant straight lines and one invariant cubic, there were obtained
the conditions under which the weak focus is a center.
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Duality and a Riemann metrics in theory of a

second order ODE’s

Valerii Dryuma

Abstract

A properties of integral curves of ODE’s of the second order
d2

dx2 y(x) = Q(x, y, y′) and of the first order d
dx
y(x) = Qn(x,y)

Pn(x,y)

with a help of conformal 4D- Riemann metrics of Fefferman and
Walker types are investigated.

Keywords: CR-structures, Duality, Fefferman metrics, Bach
tensor, Walker metrics ).

1 Introduction

Geometric methods play an important role in theory of differential
equations. Here we deal with geometry of a second order ODE y′′ =
Q(x, y, y′) considered modulo point transformations of variables. Using
analogy between the 2d- order ODE’s and 3-dimensional CR-structures
and theory of duality developed by E.Cartan we apply conformal 4D-
metrics of Fefferman with signature (2, 2) to the study of Invariant
properties of integral curves of a second order ODE’s having the form
y′′ = A4(x, y) + A3(x, y)y

′) + A2(x, y)y
′2 + A1(x, y)y

′3 and of a more
complicate type. In particular properties of algebraic second order
ODE’s F (y, y′, y′′) = 0 and F (x, y′, y′′) = 0 which admit reduction to a
first order ODE’s H(x, y, y′) = 0 are considered. With this aim Bach-
tensor Bik of the metric expressed through the derivatives of the Weyl
tensor Cijkl is applied.
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2 Duality to a second order ODE’s

The relation between a four variables F (x, y, a, b) = 0 determines some
3D-manifold and generates two a second order ODE’s y′′ = f(x, y, y′)
and b′′ = h(a, b, b′). A first one is result of elimination of variables a, b
from the conditions

F (x, y, a, b) = 0, Fx + y′Fy = 0, Fxx + 2y′Fxy + Fyyy
′2 + Fyy

′′ = 0,

and a second one is obtained after eliminating of the variables x, y from
the system

F (x, y, a, b) = 0, Fa + b′Fb = 0, Faa + 2b′Fab + Fbbb
′2 + Fbb

′′ = 0.

Taking into account that only general integral F (x, y, a, b) = 0 of an
arbitrary second-order equation y′′ = f(x, y, y′) contains complete in-
formation about solutions E. Cartan developed geometric theory of Du-
ality for various invariant classes of the second order ODE’s. As exam-
ple the equations of the form y′′ = A4(x, y)+A3(x, y)y

′+A2(x, y)y
′2+

A1(x, y)y
′3 and b′′ = h(a, b, b′) where the function h(a, b, b′ = c) is solu-

tion of the p.d.e. D2hcc−4Dhbc−hcDhcc+4hchbc−3hbhcc+6hbb = 0,
where D = ∂a + c∂b + h∂c form a dual pairs.

Theorem 1. To the equation (b0+b1y
′+b2y

′2)y′′ = a0+a1y
′+a2y

′2+
a3y

′3+a4y
′4+a5y

′5, b = bi(x, y), ai = ai(x, y), from the point invariant

class hm(x, y, y′)y′′ = hm+3(x, y, y
′),m = 2 dual equation determined

by solutions of the equation ψ3

6
+ψ8ψ

2

5
+ψ4ψ

2

7
−ψ4ψ5ψ8−2ψ5ψ6ψ7 = 0,

where 4!ψ4 = − d2

da2
hcc +4 d

da
hbc + hc

d
da
hcc − 4hchbc +3hbhcc − 6hbb and

ψ2

6
− ψ4ψ5 = 0,m = 1, where kψk = d

da
ψk−1 + (3 − k)hcψk−1 + (k −

1) + hbψk−2, k > 4.
Example 1 The equations

−4 + 3x4 y(x)2 + 2x5y′y′′ = 0, b′′ +
1

a
tan(1/2 b(a)) = 0

with General Integral

F (x, y, a, b) = b+ 2 arctan(
1

√
−1 + xa

)a+ 2

√
−1 + xa

x
− y = 0

form a dual pair.
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3 Fefferman metrics

Definition 1 [2]. The Fefferman metrics is the metrics on 4-manifolds

in coordinates (x, y, p = y′) associated with an second order ODE’s y′′ =
Q(x, y, y′), considered modulo point transformation x = f(x, y), y =
g(x, y). It has the form

ds2 = (dz −Qdx)dx− (dy − zdx)(dw +
2

3
Qzdx+

1

6
Qzz(dy − zdx))

Definition 2 . Bach tensor of 4-manifolds has the form

Bik = ∇r∇sCrisk +
1

2
RrsCirks,

where Cijkl is Weyl tensor, Rij is Ricci tensor of the metrics.

Theorem 2. For the conformal Fefferman metrics

−e−A(x,y,z)ds2 = −6 ldzdx+ 6 lQ(x, y, z)dx2 + dydw+

+4l

(
∂

∂z
Q(x, y, z)

)

dx dy + l

(
∂2

∂z2
Q(x, y, z)

)

dy2−

−2l

(
∂2

∂z2
Q(x, y, z)

)

zdx dy − zdxdw − 4l
∂

∂z
Q(x, y, z) zdx2+

+z2l
∂2

∂z2
Q(x, y, z)dx2

all components of Bach tensor equal to zero Bxx = 0, Bxy = 0, Byy = 0
if the function Q(x, y, z) satisfies to the p.d.e.

2QQzzzzQzz+z
2Qyyzzzz+2z Qxyzzzz+Qxxzzzz+Q

2Qzzzzzz+zQyQzzzzz+

+2z Q(x, y, z)Qyzzzzz + 2Q2

zQzzzz + 3QzQxzzzz + 2QQxzzzz+

+2z QyzQzzzz + 2QxzQzzzz +QxQzzzzz + 3z QzQyzzzz+

+4QQzQzzzzz +QQyzzzz −QyQzzzz = 0. (1)

Corollary 1 Class of the second order ODE’s y′′ = Q(x, y, y′) with
the function Q(x, y, y′) from [1] contains the equations of the form y′′ =
A4(x, y) +A3(x, y)y

′ +A2(x, y)y
′2 +A1(x, y)y

′3 and dual of them.
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4 Conformal Walker metrics

Definition 3 [3] . Conformal Walker metrics on 4-manifolds in

coordinates (x, y, z, w) associated with the second order ODE’s y′′ =
a4(x, y)+3a3(x, y)y

′+3a2(x, y)y
′2+a1(x, y)y

′3, considered modulo point

transformation x = f(x, y), y = g(x, y) has the form

1

2
e−A(x,y)ds2 = dx dz + dy dw + 2 ( za2 (x, y) − wa3 (x, y)) dx dy+

+(za3 (x, y)− a4 (x, y)w) dx
2 + (za1 (x, y)− wa2 (x, y)) dy

2. (2)

This type of metric generalizes the standard Walker metric and is
applied to the study of the properties of geodesics and transfer surfaces
defined by the system of equations Zi

u,v +Γi
jkZ

j
uZk

v = 0, where Γi
jk are

Christoffel symbols of the metrics.
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Stable Spectral Collocation Solutions to Cauchy

Problems for Nonlinear Dispersive Wave

Equations

Călin-Ioan Gheorghiu

Abstract

In this paper we are concerned with accurate and stable
spectral collocation solutions to initial-boundary value problems
attached to some challenging nonlinear wave equations defined
on unbounded domains. We argue that spectral collocation ba-
sed on Hermite and sinc functions actually provide such solutions
avoiding the empirical domain truncation or any shooting techni-
ques.

Keywords: Hermite, sinc, collocation, nonlinear, wave equa-
tion, shock like solution.

1 Introduction

The most useful technique to solve initial-boundary value problems at-
tached to nonlinear parabolic equations on unbounded domains (half
line or the real line) involve the truncation of the domain to a finite
computational one, say [xL, xR], with approximate boundary conditi-
ons imposed at x = xL and x = xR. One of the most difficult numerical
issue for such technique is the sensitivity of a correct numerical solution
to the appropriate boundary conditions, especially the one imposed at
the right-hand boundary. In order to avoid this tedious discussion
on the proper boundary conditions at the ends of the computational
domain we will try to solve the aforementioned problems by Hermite
collocation (HC) and sinc collocation (SiC).

c©2017 by Călin-Ioan Gheorghiu
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In [1] the author observes that for problems on unbounded domains
boundary conditions are usually ”natural” rather than ”essential” in
the sense that the singularities of the differential equation will force
the numerical solution to have the correct behavior at infinity even if
no constraints are imposed on the basis functions. In this respect our
initial-boundary value problems reduce to some Cauchy problems.

2 Nonlinear wave equations with linear disper-

sion

We are concerned with non-periodic spectral collocation solutions for
initial value problems attached to nonlinear wave equations of the form

ut = N (u) + L (u) + g (x, t) , −∞ ≤ x ≤ ∞, t ≥ 0. (1)

The term N (u) is a genuinely nonlinear one and may also depend on
ux, uxx, etc. and the linear part is of the form

L (u) := c (t) im+1 (∂mu/∂xm) , (2)

but more general dispersive terms are also treatable. The forcing term
g (x, t) can be embedded into N (u). The real function c (t) is often a
constant.

The Benjamin Bona Mahony (BBM) type problems have been con-
sidered in our previous paper [4]. The Korteweg-de Vries (KdV), the
nonlinear Schrödinger (NLS) and the Fisher’s initial value problems
are more challenging examples of such problems which will be partially
addressed now.

3 Numerical analysis

The spectral collocation is based alternatively on the scaled Hermite
and sinc functions. This spatial discretization approach avoids perio-
dicity (see [2]) and frequently used empirical domain truncation (see
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[3]). In order to march in time we use TR-BDF2 (ode23tb built in
routine in MATLAB), the trapezoidal rule using a ”free” interpolant
(ode23t) and a modified Rosenbrock formula of order 2 (ode23s) FD
schemes. We show that the method of lines (MoL) involved is stable
using the pseudospectra of the linearized spatial discretization opera-
tors (see also [6]). The sinc collocation along with TR-BDF2 perform
better than the other methods with respect to the accuracy and the
computational effort. A heuristic explanation is provided.

The extent at which some invariants are conserved over time has
been analyzed in our contribution [5]. It also proved to be fairly useful
in optimizing the scaling parameters.

3.1 Fisher’s equation with nonlocal boundary conditions

To be more specific, we define L (u) := uxx andN (u) := ρu(1−u) in (1)
where ρ stands for the reaction factor, i.e. the Fisher’s equation. We
are mainly interested in super speed waves (SSW). With an increase
in ρ, the propagating front steepens and this presents a challenging
numerical problem in order to resolve as well as to track the front. For
the infinite spatial domain, the rapidly varying shock front is considered
to be stiff with the stiffness depending on ρ.
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Figure 1. a) SSW time dependent profiles of Fisher’s equation at t = 0,
t = 3.3065e − 04, t = 8.3189e − 04 and t = 0.0013. b) The absolute
values of the expansion coefficients of the solution at t = 0.0013.
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4 Conclusion

The effectiveness of our approach has been confirmed by some challen-
ging numerical experiments. Using SiC along with TR-BDF2 we have
succeeded in capturing shock like solutions to Fisher’s problem (see
Fig. 3.1 a)). With FFT we get the expansion coefficients of the final
solution. Their decreasing behavior is reported in Fig. 3.1 b).
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Topological mixing and specification

in weakly contracting relations

Vasile Glavan, Valeriu Guţu

Abstract

We establish topological mixing and Specification property of
the dynamics of a weakly contracting compact-valued function
on its attractor. These properties strengthen our earlier results,
obtained for weakly contracting relations, namely, the topological
transitivity and Shadowing property.

Keywords: Set-valued maps, weak contractions, attractor,
shadowing, specification property, topological mixing.

1 Introduction

In [1] the authors have stated the existence of the compact glo-
bal attractor for a relation, which is contracting with respect to the
Hausdorff-Pompeiu metrics. Moreover, some characteristics of set-
valued dynamics of these relations restricted to their attractors, have
been stated, as, e.g., ”asymptotic phase property”, topological tran-
sitivity, denseness of periodic points, minimality with respect to ”big
orbits”, and Shadowing property. In [2] some of these properties, inclu-
ding ”asymptotic phase property”, topological transitivity and Shado-
wing have been generalized for weakly contracting multi-functions. In
this article we strengthen the last two properties up to topological mix-
ing and Specification property, respectively.
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2 Multi-valued weak contractions

Let (X, d) be a complete metric space and let P(X) denote the family
of all non-empty compact subsets, endowed with Hausdorff-Pompeiu
metrics H. We are concerned with the dynamics, generated by com-
positions of upper-semi-continuous multi-functions f : X → P(X),
called also as relations. In this context, a finite or infinite sequence
{xn} ⊂ X is called a chain for the multi-function f , if xn+1 ∈ f(xn)
for all n. Similarly, given δ > 0, the sequence {xn} is called a δ-chain,
if ̺(xn+1, f(xn)) ≤ δ for all n (here ̺(a,B) := inf

b∈B
d(a, b)).

A function ϕ : R+ → R+ is called a comparison function [3], if ϕ is
monotonically increasing and ϕn(t) → 0 as n → ∞, for all t ≥ 0.

Following [3], we will say that f : X → P(X) is a weak con-

traction, if there exists a comparison function ϕ : R+ → R+ such
that H(f(x), f(y)) ≤ ϕ(d(x, y)) (∀ x, y ∈ X).

A nonempty closed subset A ⊂ X is called attractor for f , if f [A] ⊃
A and there is a closed neighborhood V (A, δ) of A, where V (A, δ) :=
{x ∈ X | ̺(x,A) < δ}, such that

⋂

n≥0

fn[V (A, δ)] ⊂ A .

One says that the relation f : X → P(X) has the Shadowing pro-

perty on the compact invariant subset A ⊂ X if, given ε > 0 there
exists δ > 0 such that for any δ-chain {xn}n∈N ⊂ V (A, δ) there exists
a chain {yn}n∈N ⊂ A satisfying d(xn, yn) ≤ ε for all n ∈ N.

Theorem 1. [2] Any weakly contracting compact valued mapping has

a nonempty compact attractor and this attractor is unique. If, in addi-

tion, f is weakly contracting with respect to a right-continuous compa-

rison function, then the multi-function f has the Shadowing property

on the attractor.

3 Topological mixing and specification

Recall (see, e.g. [1]) that a multi-function f : X → P(X) is called
transitive on the compact invariant subsetA, if there is a dense chain, or
equivalently, if for any two open subsets U, V ⊂ A and any x ∈ U there
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is a chain (xk)
n
k=1

⊂ A such that x1 = x and xk ∈ V . If, in addition,
there is a chain (xn)n∈N ⊂ A, which starts in U and which remains
in V for all large enough n, then one speaks about topological mixing.
Topological transitivity of a contracting relation on its attractor has
been stated in [2]. In this article we establish stronger analogous of
transitivity and Shadowing properties, namely topological mixing and
specification.

Theorem 2. Every multi-function, which is weakly contracting with

respect to a right-continuous comparison function, is topologically mix-

ing on its attractor.

The Specification property for diffeomorphisms was introduced by
R. Bowen [4]. It says that any finite collection of consecutive pieces of
orbits of f : X → X can be shadowed by an individual orbit, provided
that the time-lag between the specified orbit segments is large enough.

The following definition represents a generalization of the Specifica-
tion property, given in [5] for homeomorphisms (see also [6, 7]). More
precisely, given the multi-function f : X → P(X), we call specification
for f the pair S = (τ, P ), consisting of a finite family of time-segments

τ = {I1, I2, . . . , Im}, Ij ⊂ N, and a mapping P :
m⋃

j=1

Ij → X, such

that P (t + 1) ∈ f(P (t)) for all t ∈ I ∈ τ , provided that t + 1 ∈ I.
We say that the specification S is ε-shadowed by the chain (xn)n∈N, if

d(xn, P (n)) < ε for all n ∈
m⋃

j=1

Ij. Given the natural number M , the

specification is called M−spaced, if the gap between two consecutive
time-segments is at least M.

One says that the multi-function f has the Specification property on
the invariant compact subset A ⊂ X if, given ε > 0, there is a natural
M such that each M−spaced specification is ε-shadowed by a chain.

Theorem 3. Every multi-function, which is weakly contracting with

respect to a right-continuous comparison function, has the Specification

property on its attractor.
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[1] V. Glavan, V. Guţu. On the Dynamics of Contracting Relati-

ons. Analysis and Optimization of Differential Systems. Edited
by V. Barbu, I. Lasiecka, D. Tiba and C. Varsan, Kluwer Acad.
Publ. 2003. pp. 179–188.
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Positive solutions for a system of difference

equations with coupled boundary conditions

Johnny Henderson, Rodica Luca

Abstract

We study the existence and multiplicity of positive solutions
for a system of nonlinear second-order difference equations sub-
ject to coupled multi-point boundary conditions.

Keywords: difference equations, coupled multi-point boun-
dary conditions, positive solutions.

1 Introduction

We consider the system of nonlinear second-order difference equations

(S)

{
∆2un−1 + f(n, vn) = 0, n = 1, N − 1,

∆2vn−1 + g(n, un) = 0, n = 1, N − 1,

with the coupled multi-point boundary conditions

(BC) u0 = 0, uN =

p∑

i=1

aivξi , v0 = 0, vN =

q∑

i=1

biuηi ,

where N ∈ N, N ≥ 2, p, q ∈ N, ∆ is the forward difference operator
with stepsize 1, ∆un = un+1 − un, ∆2un−1 = un+1 − 2un + un−1,
n = k,m means that n = k, k + 1, . . . ,m for k, m ∈ N, ai ∈ R, ξi ∈ N

for all i = 1, p, bi ∈ R, ηi ∈ N for all i = 1, q, 1 ≤ ξ1 < · · · < ξp ≤ N − 1
and 1 ≤ η1 < · · · < ηq ≤ N − 1.

Under sufficient conditions on the functions f and g, we study the
existence and multiplicity of positive solutions of problem (S)− (BC)

c©2017 by Johnny Henderson, Rodica Luca
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by using some theorems from the fixed point index theory. By a positive
solution of problem (S) − (BC) we mean a pair of sequences (u, v) =
((un)n=0,N , (vn)n=0,N ) satisfying (S) and (BC), with un ≥ 0, vn ≥ 0

for all n = 0, N and (u, v) 6= (0, 0).

The existence of positive solutions for system (S) with two parame-
ters λ and µ (denoted by (S1)), with the coupled boundary conditions
(BC) was investigated in [1]. The systems (S1) and (S) subject to some
uncoupled boundary conditions have been studied in [2] by using the
Guo-Krasnosel’skii fixed point theorem, the fixed point index theory
and the Schauder fixed point theorem.

2 Main results

We present the basic assumptions that we shall use in the sequel.

(A1) ai ≥ 0, ξi ∈ N for all i = 1, p, bi ≥ 0, ηi ∈ N for all i = 1, q,
1 ≤ ξ1 < · · · < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1 and
∆0 = N2 − (

∑p
i=1

aiξi) (
∑q

i=1
biηi) > 0.

(A2) The functions f, g : {1, . . . , N − 1} × [0,∞) → [0,∞) are conti-
nuous.

By using the associated Green functions Gi, i = 1, 4 (see [1]), our
problem (S)−(BC) can be written equivalently as the following system






un =
N−1∑

i=1

G1(n, i)f(i, vi) +
N−1∑

i=1

G2(n, i)g(i, ui), n = 0, N,

vn =

N−1∑

i=1

G3(n, i)g(i, ui) +

N−1∑

i=1

G4(n, i)f(i, vi), n = 0, N.

We consider the Banach space X = R
N+1 = {u = (u0, u1, . . . , uN ),

ui ∈ R, i = 0, N} with the maximum norm ‖ · ‖, ‖u‖ = max
n=0,N

|un|, and

the Banach space Y = X ×X with the norm ‖(u, v)‖Y = ‖u‖ + ‖v‖.

We define the cone P ⊂ Y by P =
{
(u, v) ∈ Y ; u = (un)n=0,N ,

v = (vn)n=0,N , un ≥ 0, vn ≥ 0, ∀n = 0, N
}
.
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We introduce the operators Q1, Q2 : Y → X and Q : Y → Y
defined by Q1(u, v) = (Q1(u, v))n=0,N , Q2(u, v) = (Q2(u, v))n=0,N ,

(Q1(u, v))n=

N−1∑

i=1

G1(n, i)f(i, vi) +

N−1∑

i=1

G2(n, i)g(i, ui), n = 0, N,

(Q2(u, v))n=

N−1∑

i=1

G3(n, i)g(i, ui) +

N−1∑

i=1

G4(n, i)f(i, vi), n = 0, N,

and Q(u, v)=(Q1(u, v), Q2(u, v)), (u, v) = ((un)n=0,N , (vn)n=0,N )∈Y .

Under the assumptions (A1) and (A2), it is easy to see that the
operator Q : P → P is completely continuous (see also Lemma 3.1
from [1]). Thus the existence and multiplicity of positive solutions of
problem (S)− (BC) are equivalent to the existence and multiplicity of
fixed points of operator Q.

Our main existence results for problem (S)−(BC) are the following
theorems.

Theorem 1 [3]. Assume that (A1) and (A2) hold. If the functions

f and g also satisfy the conditions

(A3) There exists c ∈ {1, . . . , [[N/2]]} such that

f i
∞

= lim
u→∞

min
n=c,N−c

f(n, u)

u
= ∞, gi

∞
= lim

u→∞

min
n=c,N−c

g(n, u)

u
=∞,

(A4) There exist p1 ≥ 1 and q1 ≥ 1 such that

f s
0
= lim

u→0+
max

n=1,N−1

f(n, u)

up1
= 0, gs0 = lim

u→0+
max

n=1,N−1

g(n, u)

uq1
= 0,

then problem (S)− (BC) has at least one positive solution ((un)n=0,N ,
(vn)n=0,N ).

Theorem 2 [3]. Assume that (A1) and (A2) hold. If the functions

f and g also satisfy the conditions

(A5) f s
∞
= lim

u→∞

max
n=1,N−1

f(n, u)

u
= 0, gs

∞
= lim

u→∞

max
n=1,N−1

g(n, u)

u
=0,

(A6) There exist c ∈ {1, . . . , [[N/2]]}, p2 ∈ (0, 1] and q2 ∈ (0, 1] such
that

f i
0
= lim

u→0+
min

n=c,N−c

f(n, u)

up2
= ∞, gi0 = lim

u→0+
min

n=c,N−c

g(n, u)

uq2
= ∞,
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then problem (S)− (BC) has at least one positive solution ((un)n=0,N ,
(vn)n=0,N ).

Theorem 3 [3]. Assume that (A1) − (A3) and (A6) hold. If the

functions f and g also satisfy the condition

(A7) For each n = 1, N − 1, f(n, u) and g(n, u) are nondecreasing

with respect to u, and there exists a constant R0 > 0 such that

f(n,R0) <
R0

4m0
, g(n,R0) <

R0

4m0
, ∀n = 1, N − 1,

where m0 = max{Mi, i = 1, 4}, (Mi =
∑N−1

j=1
Ii(j), i = 1, 4, and

Ii, i = 1, 4 are defined in [1]), then problem (S)−(BC) has at least two
positive solutions ((u1n)n=0,N , (v1n)n=0,N ) and ((u2n)n=0,N , (v2n)n=0,N ).
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Simultaneous Approximation in Weighted

Lebesgue Spaces with Variable Exponent

Daniyal M. Israfilov, Ahmet Testici

Abstract

The higher fractional order modulus of smoothness is defined
and this term the simultaneous approximation of trigonometric
and near-best approximating polynomials in the weighted varia-
ble exponent Lebesgue spaces are investigated.

Keywords: Simultaneous theorems, Muckenhoupt weights,
fractional order modulus of smoothness, variable spaces.

1 Introduction

Let T := [0, 2π] and let p (·) : T → [0,∞) be a Lebesgue measurable
2π periodic function. The variable exponent Lebesgue space Lp(·) (T)
is defined as the set of all Lebesgue measurable 2π periodic functions f
such that ρp(·) (f) :=

∫
2π

0
|f (x)|p(x) dx < ∞. During this work we sup-

pose that the considered exponent functions p (·) satisfy the conditions

1 ≤ p− := ess infx∈T p (x) ≤ ess supx∈T p (x) := p+ < ∞,
|p (x)− p (y)| ln (1/ |x− y|) ≤ c(p) < ∞, x, y ∈ T, 0 < |x− y| ≤ 1/2.

The class of these exponents we denote by P (T). If p (·) ∈ P (T) and
in addition p− > 1, then we say that p (·) ∈ P0 (T). Equipped with
the norm ‖f‖p(·) =

{
inf λ > 0 : ρp(·) (f /λ) ≤ 1

}
the space Lp(·) (T)

becomes a Banach space. Let ω be a weight function on T, i.e. an
almost everywhere positive and Lebesgue integrable function on T. For
a given weight ω we define the weighted variable exponent Lebesgue
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space L
p(·)
ω (T)as the set of all measurable functions f on T such that

fω ∈ Lp(·)(T). The norm of f ∈ L
p(·)
ω (T) can be defined as ‖f‖p(·),ω :=

‖fω‖p(·). In our discussions we assume that ω ∈ Ap(·) (T).
Definition 1 We say that ω ∈ Ap(·) (T) if the inequality

sup
I⊂T

|I|−1 ‖ωχ
I
‖p(·)

∥
∥ω−1χ

I

∥
∥
p
′

(·)
< ∞, 1/p (·) + 1/p

′

(·) = 1,

holds, where |I| is the Lebesgue measure of the interval I ⊂ T with the
characteristic function χ

I
.

Let f ∈ L1 (T) with
∫
2π

0
f (x) dx = 0. For α ∈ R

+ the αth

integral of f is defined by Iα (f, x) :=
∑

k∈Z∗

ck(f) (ik)
−α eikx, where

(ik)−α := |k|−α e(−1/2)πiα sign k, Z∗ := {±1,±2,±3, ...} and ck, k ∈

Z
∗, are the Fourier coefficients of f with respect to exponential sy-

stem. For α ∈ (0, 1) let f (α) (x) := d
dx
I1−α (f, x). If r ∈ R

+

with integer part [r], and α := r − [r], then the rth derivative

of f is defined by f (r) (x) :=
(
f (α) (x)

)([r])
= d[r]+1

dx[r]+1
I1−α (f, x) if

the right sides exist [1, p. 347]. Let x, t ∈ R, r ∈ R
+ and let

∆r
tf (x) :=

∑
∞

k=0
(−1)k [Cr

k] f (x+ (r − k) t) for f ∈ L1 (T) , where
[Cr

k ] := r (r − 1) (r − 2) ... (r − k + 1) /k! for k > 1, [Cr
k] := r for

k = 1 and [Cr
k ] := 1 for k = 0.

Definition 2 Let f ∈ L
p(·)
ω (T) , p (·) ∈ P0 (T), ω (·) ∈ Ap(·) (T) and

r ∈ R
+. We define the rth modulus of smoothness as

Ωr (f, δ)p(·),ω := sup
|h|≤δ

∥
∥
∥
∥
∥
∥

1

h

h∫

0

∆r
tf (x) dt

∥
∥
∥
∥
∥
∥
p(·),ω

, δ > 0.

Clearly Ω (f, δ)p(·),ω is well defined because by Theorem on the

boundedness of maximal function in L
p(·)
ω (T) proved in [2] we have

Ωr (f, δ)p(·),ω ≤ c ‖f‖p(·),ω.
By Sn (f) we denote the nth partial sum of the Fourier series of f ∈

L
p(·)
ω (T). Let W

p(·)

ω,β (T):=
{
f ∈ L

p(·)
ω (T) : f (β) ∈ L

p(·)
ω (T) for β > 0

}

be the weighted variable exponent Sobolev space.
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2 Main Results

By c(p), c1(p), ... we denote the different constants depending in general
of the parameters given in the brackets but independent of n.

Let En (f)p(·),ω := inf
{
‖f − Tn‖p(·),ω : Tn ∈ Πn

}
. n ∈ N, where Πn

is the class of trigonometric polynomials of degree not exceeding n and
let T ∗

n := T ∗

n (f) be the near-best approximating polynomial to f in
Πn, i.e., ‖f − T ∗

n‖p(·),ω ≤ c(p)En (f)p(·),ω, for some constant c(p) > 0,
independent of n.Our main results are following :

Theorem 1 Let f ∈ W
p(·)

ω,k (T) , p (·) ∈ P0 (T) , ω ∈ Ap(·) (T) and

k ∈ R
+. If T ∗

n ∈ Πn is a near-best approximating polynomial to f, then

the inequality
∥
∥
∥f (k) − (T ∗

n)
(k)

∥
∥
∥
p(·),ω

≤ c(p, k)En

(
f (k)

)
p(·),ω

holds.

Theorem 2 Let f ∈ W
p(·)
ω,m (T) , p (·) ∈ P0 (T) , ω ∈ Ap(·) (T) and

r,m ∈ R
+. If

‖f − Tn‖p(·),ω ≤
c(p)

nm
Ωr

(
f (m), 1/n

)

p(·),ω
, n = 1, 2, ...

for a trigonometric polynomial Tn ∈ Πn, then for every k ∈ R
+ with

0 < k ≤ m

∥
∥
∥f (k) − T (k)

n

∥
∥
∥
p(·),ω

≤
c(p, k)

nm−k
Ωr

(
f (m), 1/n

)

p(·),ω
.

Theorem 3 If f ∈ W
p(·)
ω,m (T) , p (·) ∈ P0 (T) , ω ∈ Ap(·) (T) and

r,m ∈ R
+, then for every k ∈ R

+ with 0 < k ≤ m

∥
∥
∥f (k) − S(k)

n (f)
∥
∥
∥
p(·),ω

≤
c(p, k, r)

nm−k
Ωr

(
f (m), 1/n

)

p(·),ω
.

Theorem 4 If f ∈ W
p(·)
ω,r (T) , p (·) ∈ P0 (T) , ω ∈ Ap(·) (T) and

r ∈ R
+, then Ωr (f, δ)p(·),ω ≤ c(p, r)δr

∥
∥f (r)

∥
∥
p(·),ω

.

Theorem 5 Let f ∈ L
p(·)
ω (T) , p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T). If

∞∑

ν=1

νk−1Eν (f)p(·),ω < ∞ for some k ∈ R
+, then f ∈ W

p(·)

ω,k (T) and for
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every n ∈ N

En

(
f (k)

)

p(·),ω
≤ c(p, k)

{

nkEn (f)p(·),ω +

∞∑

ν=n+1

νk−1Eν (f)p(·),ω

}

.

Remark Note that in the nonweighted spaces Lp(·) (T) the results dis-
cussed in this paper in term of the integer order modulus of smoothness
for the more general exponents p (·), namely when p (·) ∈ P (T) were
announced in [3].
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Inverse Problem For 2D Heat Equation

Mykola Ivanchov, Nataliia Kinash

Abstract

We consider an inverse problem for two-dimensional heat
equation containing two unknown coefficients: one of them de-
pends on time variable and one space variable, another depends
on time variable and the second space variable. Using Green
function and applying Schauder fixed point theorem, we establish
conditions for existence of a classical solution of the problem. The
uniqueness of solution is also established.

Keywords: inverse problem, two dimensional heat equation.

1 Introduction

Coefficient inverse problems for parabolic equations in 1D case are well
studied . The particularity of this case consists of the fact that unknown
coefficients may depend only on one variable. When one wants to
pass to 2D case, a new possibility turns out: unknown coefficients can
depend on time and space variables simultaneously. Such a kind of
problem is considered in this paper: an inverse problem for 2D heat
equation with two unknown coefficients depending on time and one of
the space variables is studied.

2 Statement of the problem

Consider an inverse problem for finding coefficients a(y, t), b(x, t) and
function u(x, y, t) from equation

ut = a(y, t)uxx + b(x, t)uyy + f(x, y, t), (x, y, t) ∈ QT , (1)

c©2017 by Mykola Ivanchov, Nataliia Kinash
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initial condition

u(x, y, 0) = ϕ(x, y), (x, y) ∈ D, (2)

boundary and overdetermination conditions

u(0, y, t) = µ11(y, t), u(h, y, t) = µ12(y, t), (y, t) ∈ [0, l] × [0, T ], (3)

u(x, 0, t) = µ21(x, t), u(x, l, t) = µ22(x, t), (x, t) ∈ [0, h] × [0, T ], (4)

a(y, t)ux(0, y, t) = µ31(y, t), (y, t) ∈ [0, l]× [0, T ], (5)

b(x, t)uy(x, 0, t) = µ32(x, t), (x, t) ∈ [0, h] × [0, T ], (6)

where D := {(x, y) : 0 < x < h, 0 < y < l}, QT := D × (0, T ).

A triple of functions (a(y, t), b(x, t), u(x, y, t) will be called a solution
of the problem (1)-(6) if it belongs to the space (C1,0([0, l] × [0, T ]) ×
C1,0([0, h]× [0, T ])×C2,1(QT )) and verifies (1)-(6). Moreover, a(y, t) >
0, (y, t) ∈ [0, l]× [0, T ], b(x, t) > 0, (x, t) ∈ [0, h] × [0, T ] .

Suppose that the following assumptions hold:

(1) ϕ ∈ C2(D), µ1i ∈ C2,1([0, l] × [0, T ]), µ2i ∈ C2,1([0, h] ×
[0, T ]), i ∈ {1, 2}, µ31 ∈ C1,0([0, l]×[0, T ]), µ3,2 ∈ C2,1([0, h]×[0, T ]), f ∈

C1,0(QT );

(2) ϕx(x, y) > 0, ϕy(x, y) > 0, (x, y) ∈ D;µ1iy (y, t) > 0, µ11t(y, t) −
f(0, y, t)−b(0, t)µ11yy (y, t) ≤ 0, µ12t(y, t)−f(h, y, t)−b(h, t)µ12yy (y, t) ≥
0,mu31(y, t) > 0, (y, t) ∈ [0, l]×[0, T ];µ2ix(x, t) > 0,i ∈{1, 2},µ21t(y, t)−
f(x, 0, t)−a(0, t)µ21xx(x, t) ≤ 0, µ22t(y, t)−f(x, l, t)−a(l, t)µ22xx(x, t) ≥
0,mu32(x, t) > 0, (x, t) ∈ [0, h] × [0, T ], ; fx(x, y, t) ≥ 0, fy(x, y, t) ≥

0, (x, y, t) ∈ QT ;

(3) consistency conditions of the zero order .

3 Existence of solution

Theorem 1. Suppose that the assumptions (1)-(3) are fulfilled. Then

such a number T1 ∈ (0, T ] may be indicated that there exists a solution

of the problem (1)-(6) defined for (x, y) ∈ D, t ∈ [0, T1].

294



Inverse Problem

To prove the theorem, we find the solution of the problem (1)-(4)
using the Green function:

u(x, y, t) =

∫∫

D

G11(x, y, t, ξ, η, 0)ϕ(ξ, η)dξdη +

t∫

0

l∫

0

G11ξ
(x, y, t, 0, η, τ)

× a(η, τ)µ11(η, τ)dηdτ −

t∫

0

l∫

0

G11ξ
(x, y, t, h, η, τ)a(η, τ)µ12(η, τ)dηdτ

+

t∫

0

h∫

0

G11η (x, y, t, ξ, 0, τ)b(ξ, τ)µ21(ξ, τ)dξdτ −

t∫

0

h∫

0

G11η (x, y, t, ξ, l, τ)

× b(ξ, τ)µ22(ξ, τ)dξdτ +

t∫

0

∫∫

D

G11(x, y, t, ξ, η, τ)f(ξ, η, τ)dξdηdτ,

(x, y, t) ∈ QT . (7)

Calculating from (7) the derivatives ux, uy and substituting them into
(5), (6), we obtain a system of equations with respect to a(y, t), b(x, t).
We apply the Schauder fixed-point theorem to this system and we
obtain the existence of its solution. Then we find the function u(x, y, t)
as a solution to the corresponding direct problem.

4 Uniqueness of solution

Theorem 2. Suppose that µ31(y, t) 6= 0, (y, t) ∈ [0, l]×[0, T ], µ32(x, t) 6=
0, (x, t) ∈ [0, h]× [0, T ]. Then the solution of the problem (1)-(6) is uni-

que.

The proof is organized by the usual way: we suppose existence of
two solutions (ak(y, t), bk(x, t), uk(x, y, t)), k ∈ {1, 2} for the problem
(1)-(6) and for their difference we obtain a homogeneous inverse pro-
blem. With the aid of the Green function, we reduce this problem to
a system of homogeneous Volterra integral equations with respect to
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a1(y, t)− a2(y, t) and b1(x, t)− b2(x, t) that has only a trivial solution.
Then we use the uniqueness of solution of the direct problem and obtain
u1(x, y, t) ≡ u2(x, y, t). The proof is complete.
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Uncontrollable Distortions in Inverse Problems

for Dynamical Systems

Yuri Menshikov

Abstract

The influence of errors in the initial conditions on the solution
of the inverse problem for a dynamical system is studied. It is
shown that these errors lead to uncontrolled distortions of the
solution of the inverse problem. A method is proposed for special
filtering of initial data which allows to exclude the uncontrolled
distortions.

Keywords: dynamical systems, inverse problem, uncontrol-
led distortions, filtering.

1 Introduction

The inaccuracy is inevitable in experimental measuring of physical va-
lues. It consist of inaccuracy of measuring instruments, noise value
and inaccuracy of visual means. The value of this inaccuracy can be
evaluated by technical indicators of measuring instruments. They do
not exceed 5-10 percent as a rule.

The experimental measuring are chosen as initial data for the follo-
wing calculations with the use of mathematical models in many practi-
cal important problems. For example, the inverse problems for evolu-
tion processes [1], the control problems with the use of experimental
data [2] belong to this class.

c©2017 by Yuri Menshikov
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2 Statement of the Problem

Let us consider the certain dynamic system the motion of which is
describing by the equation

Ẋ = CX(t) +BZ(t), (1)

where initial conditions

X(0) = X0, (2)

where Z(t) is the vector function of external impacts, X(t) is the vector-
function of state variables, C is matrix of system, B is matrix of control.

The vector function Z(t) is given in direct problems. The matrices
C and B are also given. The vector function X(t) is an unknown
function. The initial conditions (2) have been given. The solution of
system (1) can be presented in the form

X(t) = F (X0, Z(t)). (3)

If we consider the inverse problems, for example, when the vector
function Z(t) is searched, then we use the vector function X(t), values
X0 and matrixes C,B, as initial data. If we have all components of
X(t) then we have the values X0. But as a rule in practice we can’t
measure all components of X(t). One or two components of vector
function X(t) are measured usually, for example, only the first com-
ponent x1(t). Then it is necessary to have the values ẋ1(t), ẍ1(t)... for
the search of vector function Z(t). But the inaccuracy of ẋ1(t), ẍ1(t)...
cannot be evaluated in principle as the function x1(t) was obtained by
experimental way with error. This inaccuracy equals infinity in gene-
ral case. It leads to approximate solution which will be equal zero if
the regularization method was used [3]. The indicated inaccuracy was
called the uncontrollable inaccuracy [4].
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3 The Filtration of Initial Data

In work [4] it was shown that uncontrollable inaccuracy lead to an
additional uncontrollable distortions of the desired solution of the form

c0 + c1t+ c2t
2 + ...+ k1δ+(t) + k2δ̇+(t) + .... (4)

where c0, c1, k1, k2 are constants, δ+(t) is symmetrical delta function.

Let us consider the inverse problem for the dynamical system (1)
as the solution of equation

Az = u, (5)

where z is searched function, u is given function, A is given compact
operator.

The following method of influence removal of uncontrollable inaccu-
racy on result of inverse problem solution is suggested: the items which
determine the uncontrollable values of initial conditions are excluded
from function u in equation (5) by means of special filtration. For ex-
ample, for the inverse problem of astrodynamics [5] in the equation (5)
the items c0, c1 are excluded by us from function u as very these items
determine the uncontrolled distortions. Further we used the proper-
ties of Legander’s polynomials. Let us define the values of c0, c1 from
expressions c0 = c̃0 − 0.5c̃2, c1 = c̃1 − 1.5c̃3, where c̃0, c̃1, c̃2, c̃3 are the
coefficients of Fourier of function u on Legander’s polynomials. Then
in equation (5) we use the function û = u− c0− c1t instead of function
u.

4 Conclusion

An algorithm for eliminating an uncontrolled error in solving an inverse
problem for a dynamical system based on a special filtering of the initial
data is proposed.
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Invariant conditions of stability of unperturbed

motion for differential systems with quadratic

nonlinearities in the critical case

Natalia Neagu, Victor Orlov, Mihail Popa

Abstract

The center-affine invariant conditions of stability of unper-
turbed motion governed by differential systems in the plane with
quadratic nonlinearities in the critical case were determined.

Keywords: Differential systems, stability of unperturbed
motions, center-affine comitants and invariants, Sibirsky graded
algebras.

1 Introduction

Differential systems with polynomial nonlinearities play an important
role in practical problems. Among them, the more spread are the
Lyapunov critical systems, i.e. the systems with one root of the cha-
racteristic equation equal to zero and the others roots with negative
real parts. In this paper the systems with quadratic nonlinearities of
the Lyapunov form are studied.

2 Stability of unperturbed motion

We examine the differential system with quadratic nonlinearities

dxj

dt
= ajαx

α + ajαβx
αxβ (j, α, β = 1, 2), (1)

c©2017 by Natalia Neagu, Victor Orlov, Mihail Popa
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where ajαβ is a symmetric tensor in lower indices in which the total
convolution is done.

The tensorial forms of generators of the Sibirsky algebras [1] of the
system (1) will be written [2]:

I1 = aαα, I2 = aαβa
β
α, I5 = aαp a

β
γqa

γ
αβε

pq, K1 = aααβx
β , K2 = apαx

αxqεpq,

K3 = aαβa
β
αγx

γ , K4 = aαγa
β
αβx

γ , K5 = apαβx
αxβxqεpq, K7 = aαβγa

β
αδx

γxδ,

K8 = aαγa
β
δ a

γ
αβx

δ, K11 = apαa
α
βγx

βxγxqεpq, K12 = aαβa
β
αγa

γ
δµx

δxµ, (2)

K13 = aαγa
β
αβa

γ
δµx

δxµ,

where εpq(εpq) is the unit bivector with coordinates.
It is easy to show that if the invariant conditions are satisfied

I2
1
− I2 = 0, I1 < 0, (3)

then system (1), by a center-affine transformation, can be brought to
the following critical system of the Lyapunov form

dx1

dt
= a1αβx

αxβ,
dx2

dt
= a2αx

α + a2αβx
αxβ (α, β = 1, 2). (4)

Remark 1. In this paper the Lyapunov Theorem on stability of un-
perturbed motion [3, §32] will be called the Lyapunov Theorem.

Let us introduce the following notations

P = (a22)
2a111−2a21a

2

2a
1

12+(a21)
2a122, Q = (a22)

2a211−2a21a
2

2a
2

12+(a21)
2a222,

R = (a22)
2a111 − (a21)

2a122, S = a21a
1

22 − a22a
1

12 (I1 = a22 < 0). (5)

Taking into account (5) and the Lyapunov Theorem on stability of
unperturbed motion in system (4) we have the following lemma.
Lemma 1. The stability of unperturbed motion in system (4) is des-

cribed by one of the following six possible cases:

I. P 6= 0, then the unperturbed motion is unstable;

II. P = 0, QS > 0, then the unperturbed motion is unstable;

III. P = 0, QS < 0, then the unperturbed motion is stable;
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IV. R = S = 0, a1
22
Q 6= 0, then the unperturbed motion is unstable;

V. P = Q = 0, then the unperturbed motion is stable;

VI. a1
11

= a1
12

= a1
22

= 0, then the unperturbed motion is stable.

In the last two cases the unperturbed motion belongs to some con-

tinuous series of stabilized motion, moreover in Case (iii) it is also

asymptotic stable [4]. The expressions P,Q,R, S are given in (5).

Later on, we make use of the following expressions of the invariants
and comitants of system (1) given in (2):

E1 = I21K1 − I1(K3 +K4) +K8,

E2 = I3
1
(K2

1
−K7)+2I2

1
(K1K4−2K1K3−K13)+2I1(I5K2+2K2

3
−K2

4
)+

+4K8(K4 −K3) + 2I2K12, E3 = I2K1 + I1(K4 −K3)−K8,

E4 = I1(K11 −K1K2) +K2(K4 −K3), E5 = K11 − I1K5. (6)

Theorem 1. Let for differential system of the perturbed motion (1)
the invariant conditions (3) are satisfied. Then the stability of the

unperturbed motion in system (1) is described by one of the following

six possible cases:

I. E1 6≡ 0, then the unperturbed motion is unstable;

II. E1 ≡ 0, E2 > 0, then the unperturbed motion is unstable;

III. E1 ≡ 0, E2 < 0, then the unperturbed motion is stable;

IV. E3 ≡ 0, E4E5 6≡ 0, then the unperturbed motion is unstable;

V. E4 ≡ 0, then the unperturbed motion is stable;

VI. E5 ≡ 0, then the unperturbed motion is stable.

In the last two cases the unperturbed motion belongs to some con-

tinuous series of stabilized motion, and moreover in Case III it is also

asymptotic stable. The expressions Ei (i = 1, 5) are given in (6).

Remark 2. The extended conditions for Lyapunov’s example [3, §32]
are obtained from Theorem 1.
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3 Conclusion

In this paper the differential system given in Example 2 [3, §32] was
investigated by means of comitants and invariants of the Sibirsky alge-
bras of differential system with quadratic nonlinearities.
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On the Riemann boundary value problem in the

case of a piecewise Lyapunov contour

Vasile Neagu

Abstract

The generalized Riemann boundary value-problem is investi-
gated in the case of a piecewise Lyapunov contour. It is proved
that the conditions for normal solvability depend on the coeffi-
cients of the problem, as well as on the presence of corner points
on the contour of integration.

Keywords: Noetherian operator, Lyapunov contour, sym-
bol, Riemann boundary value problem.

1 Introduction

Let Γ be a closed, oriented, piecewise Lyapunov contour which divides
the complex plan into an interior domain D+ and an exterior domain
D−. We denote by Lp (Γ, ρ) the space Lp on Γ with weight ρ(t) =
∏n

k=1 |t− tk|
βk , where t1, . . . , tn are distinct points of the curve Γ and

β1, . . . , βn are arbitrary real numbers satisfying the relations −1 < βk <
p− 1. In the space Lp (Γ, ρ), over the field of real numbers, we consider
the bounded linear operator

A = aP + bQ+ (cP + dQ)V, (1)

where a, b, c, d are continuous functions on Γ, (V φ) (t) = φ̄ (t) , and

(Pφ)(t) =
1

2
φ(t) +

1

2πi

∫

Γ

φ(τ)

τ − t
dτ, (Qφ) = φ(t)− (Pφ)(t).

c©2017 by Vasile Neagu
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In the case when Γ is a Lyapunov contour the operator A and
the Carleman integral equations with a shift and complex conjugate
unknowns have been considered by many authors. We mention only
[1], where a detailed bibliography can be found.

In constructing the Noether theory of the operator A a basic role
is played by the fact that if at each point of the contour Γ a Lyapunov
condition is satisfied, then the operator V SV + S (S = P + Q) is
completely continuous in space Lp (Γ, ρ) (see [1]). In this case A is
Noetherian [1] if and only if the operator

AV =

∥
∥
∥
∥

a c
d̄ b̄

∥
∥
∥
∥P +

∥
∥
∥
∥

b d
c̄ ā

∥
∥
∥
∥Q (2)

possesses the same property in the space L2
p (Γ, ρ) = Lp (Γ, ρ) ×

Lp (Γ, ρ) . The situation is otherwise if the contour Γ has corner points.
It turns out that in this case the operator V SV +S is not completely
continuous in Lp (Γ, ρ) , and if A is Noetherian, so is AV , but the con-
verse assertion is not true. These facts disclose the essential difference
between the piecewise Lyapunov contour and a Lyapunov contour.

In this note we construct the symbol of the operator (1) in the form
of a matrix-valued function of the variable order. The non-degeneracy
of the symbol is a necessary and sufficient condition for the operator A
to be Noetherian in Lp (Γ, ρ) . Analogous results are obtained for the
generalized Riemann boundary value problem.

2 Defining the symbol

Let t1, . . . , tn be all the corner points of the contour Γ, where t1 ≺ t2 ≺
· · · ≺ tn and the relation tk ≺ tk+1 means that the point tk precedes
tk+1 on the oriented contour Γ. We denote by α̃k, k = 1, 2, . . . , n, the
non-negative angle, 0 ≤ α̃k ≤ 2π, by which an infinitely small vector
tkZ rotates when the point Z to the left of Γ and turning about tk passes
from the portion tktk+1, k = 1, 2, . . . , n, tn+1 = t1 of the contour Γ to
the portion tk−1tk (t0 = t1). We denote by αk (= α(tk)) the quantity
αk = min(α̃k, 2π − α̃k). In this paper we assume that αk 6= 0.
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We now define the symbol A(t, ξ), t ∈ Γ, −∞ ≤ ξ ≤ ∞ of the
operator A acting in Lp (Γ, ρ) . To this end we first define the symbol
of the operators aI, P and Q. The symbol aI , a ∈ C(Γ) , is the matrix-
valued function a(t, ξ), t ∈ Γ, −∞ ≤ ξ ≤ ∞ of variable order defined
by the following equalities:

a (t, ξ) =

{
diag(a(t), a (t)) for t 6= tk ,

diag(a(tk), a (tk), a(tk), a (tk)),

where diag(x1, x2, . . . , xs) is the diagonal matrix of order s with the
elements x1, x2, . . . , xs on the diagonal.

The symbol P (t, ξ) of an operator P is the following matrix-valued
function

P (t, ξ) =

∥
∥
∥
∥

1 0
0 0

∥
∥
∥
∥ for t ∈ Γ\ {t1, t2, . . . , tn} ,

P (t, ξ) =
1

z2πk − 1

∥
∥
∥
∥
∥
∥
∥
∥

z2πk 0 −zαk

k 0

0 −1 0 z2π−αk

k

z2π−αk

k 0 −1 0
0 −zαk

k 0 z2πk

∥
∥
∥
∥
∥
∥
∥
∥

,

where zk = exp(ξ+i1+βk

p
). We define the symbol Q(t, ξ) of the operator

Q by the formula Q(t, ξ) = E(t) − P (t, ξ), where E(t) is the identity
matrix of second order for t 6= tk and of fourth order for t = tk, k =
1, 2, . . . , n.

The symbol V (t, ξ) of the operator V is defined by the matrices

V (t, ξ) =

∥
∥
∥
∥

0 1
1 0

∥
∥
∥
∥ , for t ∈ Γ\ {t1, . . . , tn} , V (tk, ξ) =

∥
∥
∥
∥
∥
∥
∥
∥

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

∥
∥
∥
∥
∥
∥
∥
∥

.

If the operator A has the form (1), we define its symbol A(t, ξ) to be

A (t, ξ) = a (t, ξ)P (t, ξ) + b (t, ξ)Q (t, ξ)+
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+ [c (t, ξ)P (t, ξ) + d (t, ξ)Q (t, ξ)]V (t, ξ) .

Theorem 1. The operator A = aP + bQ+(cP + dQ)V is Noetherian

in the space Lp (Γ, ρ) if and only if the following condition is satisfied

detA(t, ξ) 6= 0, t ∈ Γ, −∞ ≤ ξ ≤ ∞.

Corollary 1. If the operator A is Noetherian, then the corresponding

operator AV defined by (2) is also Noetherian. The converse is not

true, in general.

The properties of operators of local type [2] and some results from
[3] and [4] concerning singular operators with a shift along piecewise
Lyapunov curves are used in the proof of Theorem 1.

Theorem 2. The operator

(V SV + S)φ =
1

πi

∫

Γ

φ (τ)

τ̄ − t̄
dτ +

1

πi

∫

Γ

φ (τ)

τ − t
dτ

is completely continuous in space Lp (Γ, ρ) if and only if Γ is a Lyapunov

contour.

The sufficient part of this assertion was proved in [1,5]. We prove
here the necessity. Suppose that V SV + S is completely continuous,
then the operator Rλ = V SV + S − λI is Noetherian for all λ ∈

C\ {0} . Hence, by Theorem 1, detRλ(tk, ξ) 6= 0 for all k = 1, 2, . . . , n

and −∞ ≤ ξ ≤ ∞. From this we find that
z
2π−αk
k

−z
αk
k

z2π
k

−1
≡ 0, where

zk = exp(ξ + i1+βk

p
).

The latter is possible only for αk = π. This means that Γ is a Lyapunov
contour. The proof of the theorem is complete.

In contrast to singular operators don’t containing the operator V
(i.e., A = aP + bQ), the condition for the operator A be Noetherian
essentially depends on the contour. For example, the operator A =
(1 +

√
2)P + (1 −

√
2)Q + V is Noetherian in all spaces Lp (Γ, ρ), if

Γ is a Lyapunov contour and is not Noetherian in L2 (Γ), if Γ has at
least one corner point with angle π/2. This follows immediately from
Theorem 1.
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3 Noetherian criteria

In conclusion we consider the generalized Riemann boundary value
problem: find analytic functions Φ+(z) and Φ−(z) which can be re-
presented by the Cauchy integral in D+and D−, with limit values on
Γ which belong to Lp (Γ, ρ) , 1 < p < ∞, and satisfy the boundary
condition

Φ+(t) = a(t)Φ−(t) + b(t)Φ−(t) + c(t), (3)

where a(t) and b(t) are known continuous functions on Γ and c(t) ∈

Lp (Γ, ρ) .

The Noether theory to the problem (3) in the case of a Lyapunov
contour is constructed in [1] and [6]. In particular, in these papers it
was established that the inequality |a(t)| > 0 for all t ∈ Γ is a necessary
and sufficient condition for the problem to be Noetherian. In the case
of a piecewise Lyapunov contour we have the following theorem.

Theorem 3. The following conditions are necessary and sufficient for

the problem (3) be Noetherian:

1. |a(t)| > 0, t ∈ Γ;

2. |a(tk)|
2 −

z2π−αk

k − zαk

k

z2πk − 1
|b(tk)|

2 6= 0, for all k = 1, 2 . . . , n,

where

zk = exp(ξ + i
1 + βk

p
), −∞ ≤ ξ ≤ ∞.

Thus, in the case of a piecewise Lyapunov contour, the Noetherian
property of the problem (3) depends not only by the coefficient a(t),
as in the case of a Lyapunov contour, but also on b(t).

4 Conclusion

The Noetherian criteria for the Riemann boundary-value problems were
obtained on piecewise Lyapunov curves applying the Plemelj-Sohotsky
formulas in combination with the symbol of singular integral equati-
ons. The proposed method can be used in the study of boundary-value
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problems with discontinuous coefficients when the integration contour
consists of a finite number of closed curves without common points.
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Birkhäuser Verlag, Basel, 26, 1997.

[6] B. Boiarski. On the Hilbert generalized boundary value problem.
Soobsch. Akad. Nauk Gruz. SSR, vol. 25, no 4 (1960), pp. 380–
390 (in Russian).

Vasile Neagu

Moldova State University,

Email: vasileneagu45@gmail.com

310



Proceedings of the 4th Conference of Mathematical Society of Moldova

CMSM4’2017, June 28-July 2, 2017, Chisinau, Republic of Moldova

On periodic solutions of the four-dimensional

differential system of Lyapunov-Darboux type

with quadratic nonlinearities

Victor Orlov, Mihail Popa

Abstract

For the four-dimensional differential system of Lyapunov-
Darboux type with quadratic nonlinearities, we have found a
holomorphic integral of Lyapunov type. Using this integral and
the Lyapunov theorem, we have obtained centro-affine invariant
conditions for stability of unperturbed periodic motion.

Keywords: Differential system, center-affine comitant, sta-
bility of unperturbed motion.

1 Introduction

The differential systems with polynomial nonlinearities are important
in various applied problems. One of the interesting cases is differential
systems, which characteristic equations have purely imaginary roots.
In this paper we consider a four-dimensional differential system, which
characteristic equation has two simple purely imaginary roots and the
other two roots have real negative parts.

c©2017 by Victor Orlov, Mihail Popa
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2 Stability of unperturbed periodic motions of

Lyapunov-Darboux type differential system

with quadratic nonlinearities

Let the characteristic equation of the differential system

dxj

dt
= ajα x

α +Xj x1, x2, ..., xn+2
)

(j, α = 1, n + 2) (1)

has two purely imaginary simple roots λ
√
−1 and −λ

√
−1, where Xj

are holomorphic functions of xj (j = 1, 4).
The systems (1) with two purely imaginary roots and n roots with

negative real part of the characteristic equation will be called systems

of Lyapunov type.
Consider the system of differential equations

ẋj = ajαx
α + ajαβx

αxβ (j, α, β = 1, 4), (2)

where ajαβ is a symmetric tensor in lower indices, in which the com-
plete convolution is made and the group of center-affine transformations
GL(4,R).

The following center-affine invariant polynomials of the system (2)
are known from [3]:

I1,4 = aαα, I2,4 = aαβa
β
α, I3,4 = aαγa

β
αa

γ
β, I4,4 = aαδ a

β
αa

γ
βa

δ
γ , P1,4 = aααβx

β,

P2,4 = aαβa
β
αγx

γ , P3,4 = aαγa
β
αa

γ
βδx

δ, P4,4 = aαδ a
β
αa

γ
βa

δ
γµx

µ,

S0,4 = uαx
α, S1,4 = aαβx

βuα, S2,4 = aαγa
β
αx

γuβ, S3,4 = aαδ a
β
αa

γ
βx

δuγ ,

R6,4 = aαpa
β
q a

γ
βa

δ
ra
µ
δ a

ν
µusuαuγuνε

pqrs, R6,4 = det

(
∂Si−1,4

∂xj

)

i,j=1,4

,

K6,4 = aαθ a
β
γa

γ
ϕa

δ
µa

µ
νa

ν
ψx

θxϕxψxτεαβδτ , K̃1,4 = aαβγx
βxγyδzµεαγδµ, (3)

where vectors y = (y1, y2, y3, y4) and z = (z1, z2, z3, z4) are cogra-
dient with vector of phase variables x = (x1, x2, x3, x4), and vector
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u = (u1, u2, u3, u4) is covariant with vector x [2]. Polynomials Ii,4
(i = 1, 4) are invariants, Pj,4 (j = 1, 4) and K6,4 are comitants, Sj,4
(j = 0, 3) are mixed comitants, R6,4 is contravariant, and K̃1,4 is comi-
tant of cogradient vectors x, y, z [2].

Lemma 1 [3]. If K̃1,4 from (3) is identically equal to zero (K̃1,4 ≡ 0)
then the system (2) takes the form

ẋj = ajαx
α + 2xj a11αx

α
)

(j, α = 1, 4). (4)

The system (4) is called four-dimensional differential system of Dar-

boux type.

Remark 1. For any centro-affine transformation of the system (4), its
quadratic part retains its form changing only the variables and coeffi-

cients. This follows from the fact that the identity K̃1,4 ≡ 0 is preserved

under any centro-affine transformation.

Lemma 2 [3]. If R6,4 6≡ 0, then by the centro-affine transformation

x1 = S0,4, x2 = S1,4, x3 = S2,4, x4 = S3,4, (5)

the system (4) can be brought to the following form:

ẋ1 = x2+2x1
(
a11αx

α
)
, ẋ2 = x3+2x2

(
a11αx

α
)
, ẋ3 = x4+2x3 a11αx

α
)
,

ẋ4 = −L4,4x
1 − L3,4x

2 − L2,4x
3 − L1,4x

4 + 2x4 a1
1αx

α
)
, (6)

where

L1,4 = −I1,4, L2,4 =
1

2
(I21,4−I2,4), L3,4 =

1

6
(3I1,4I2,4−2I3,4−I

3

1,4),

L4,4 =
1

24
(8I1,4I3,4 − 6I4,4 − 6I2

1,4I2,4 + 3I2
2,4 + I4

1,4), (7)

Ik,4 (k = 1, 4) are from (3).

Remark 2. The characteristic equation of the system (6) has the form

ρ4 + L1,4 ρ
3 + L2,4 ρ

2 + L3,4 ρ+ L4,4 = 0, (8)
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where Li,4 (i = 1, 4) are from (7).

Lemma 3. The characteristic equation (8) has two simple purely ima-

ginary roots λ
√
−1 and −λ

√
−1 and two other roots with real negative

part if and only if

L1,4 > 0, L2,4 > 0, L1,4L2,4 − L3,4 > 0,

L2

1,4L4,4 + L2

3,4 − L1,4L2,4L3,4 = 0, (9)

where Li,4 (i = 1, 4) are from (7).

Theorem 1. If K̃1,4 ≡ 0 and R6,4 6≡ 0, then under conditions (9),
using centro-affine transformation the system (2) can be brought to the

following form (x = x1, y = x2, z = x3, u = x4):

ẋ = −λ y + 2xψ ≡ P, ẏ = λx+ 2yψ ≡ Q, ż = u+ 2zψ ≡ R,

u̇ = y + (λ2 + c) z + du+ 2uψ ≡ S, (10)

where λ = ±
√

L3,4

L1,4
(L1,4L3,4 > 0), c = −L2,4, d = −L1,4, Li,4 are

from (7), ψ = Ax+By + Cz +Du with A, B, C, D real constants.

The system (10) will be called differential system of Lyapunov-

Darboux type.

Theorem 2. The functions

ζ1 = x2 + y2, ζ2 = λ3 + cλ− 2(Bc− C +Bλ2)x+ 2A(c + λ2) y+

+2λ(−Cd+ cD +Dλ2) z + 2Cλu, ζ3 = λ2 x2 + dλxy + cdλxz+

+λ(2c+ d2 + 4λ2)xu− (c+ λ2) y2 − [2c2 + (6c+ d2)λ2 + 4λ4] yz−

−cd yu− [c3 + c(5c + d2)λ2 + (8c + d2)λ4 + 4λ6] z2−

−[c2 + (4c + d2)λ2 + 4λ4] dzu− u2
)

(11)

are particular integrals of the system (10), F = ζ1 ζ
−2

2
is prime integral

of Darboux type of the system (10).
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Proof. Denote by

Λ = P
∂

∂ x
+Q

∂

∂ y
+R

∂

∂ z
+ S

∂

∂ u
,

the operator of the system (10). By a direct calculation we obtain

Λ (ζ1) = 4 ζ1 ψ, Λ (ζ2) = 2 ζ2 ψ, Λ (ζ3) = ζ3 (d+ 4ψ),

Λ
(
ζα1 ζ

β
2

)
= 2(2α + β) ζα1 ζ

β
2
ψ,

where ψ = Ax+By + Cz +Du. The theorem is proved.

From [3] the following comitant of the system (2) is known:

Φ4,4 = L4,4 − 2(4/5L3,4P1,4 + L2,4P2,4 + L1,4P3,4 + P4,4), (12)

where Pj,4 (j = 1, 4) are from (3), Li,4 (i = 1, 4) are from (7).

Remark 3. For the system (10) for x = x1, y = x2, z = x3, u = x4

we have Φ4,4 = −λζ2, where ζ2 is from (11).

Remark 4. The prime integral F = ζ1 ζ
−2

2
of the system (10) with

ζ2 6≡ 0 (Φ4,4 6≡ 0) can be written as a holomorphic Lyapunov integral

([1], §40) F = x2+y2+ F̃ (x, y, z, u), where F̃ (x, y, z, u) contains terms

of degree at lest two in variables x, y, z, u.

Using the Lyapunov theorem ([1], p.160), lemmas 1–3, theorems
1–2 and remarks 3–4, we obtain

Theorem 3. Assume for the system (2) with K̃1,4 ≡ 0 and R6,4 6≡ 0
under centro-affine invariant conditions (9), the comitant (12) is not

identically zero. Then the system has a periodic solution containing an

arbitrary constant, and varying this constant one can obtain a conti-

nuous sequence of periodic motions, which comprises the studied un-

perturbed motion. This motion is stable and any perturbed motion,

sufficiently close to the unperturbed motion, will tend asymptotically to

one of the periodic motions.
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3 Conclusion

Using of centro-affine invariants and comitants of the four-dimensional
differential system with quadratic nonlinearities we obtain extension of
the results stated in the Lyapunov theorem ([1], §40) concerning the
stability of unperturbed periodic motion of the studied system.
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Large-time behavior of the difference of

solutions of two evolution equation

Andrei Perjan, Galina Rusu

Abstract

In a real Hilbert space H we consider a linear self-adjoint po-
sitive definite operator A : V = D(A) ⊂ H → H and investigate
the behavior of the difference u− v of solutions to the problems

{
u′′(t) + u′(t) +Au(t) = f(t), t > 0,
u(0) = u0, u′(0) = u1,

{
v′(t) +Av(t) = f(t), t > 0,
v(0) = u0,

where u0, u1 ∈ H, f : [0,+∞) → H.

Keywords: large-time behavior, abstract first order differen-
tial equation, abstract second order differential equation, a priori
estimate.

Let H be a real Hilbert space endowed with the scalar product (·, ·)
and the norm | · |, and V be a real Hilbert space endowed with the
norm || · ||, densely and continuously embedded in H i. e. there exists
γ0 > 0 such that

γ0 |u| ≤ ||u||, ∀u ∈ V. (HV)

Let A : V ⊂ H → H be a linear, self-adjoint and positive definite
operator, i.e. there exists γ > 0 such that

(Au, u) ≥ γ1 ||u||
2, ∀u ∈ V. (HA)
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Consider the following Cauchy problems:
{

u′′(t) + u′(t) +Au(t) = f(t), t > 0,
u(0) = u0, u′(0) = u1,

(1)

{
v′(t) +Av(t) = f(t), t > 0,
v(0) = u0,

(2)

where u0, u1 ∈ H, f : [0,+∞) → H.
We investigate the behavior of the difference u − v of solutions to

the problems (1) and (2) when t → +∞. The main result is established
in Theorem 3. This result improves the results from [2] and [3] in the
sense that we skip the condition of separability of the space H and take
a nonzero right hand part therm.

For k ∈ N
⋆, 1 ≤ p < +∞, (a, b) ⊂ (−∞,+∞) and Banach

space X we denote by W k,p(a, b;X) the Banach space of all vecto-
rial distributions u ∈ D′(a, b;X), u(j) ∈ Lp(a, b;X), j = 0, 1, . . . , k,

endowed with the norm ‖u‖W k,p(a,b;X)
=

(∑k
j=0

‖u(j)‖p
Lp(a,b;X)

)
1/p

.

For s ∈ R, k ∈ N and p ∈ [1,∞], we define the Banach space

W k,p
s (a, b;X) = {f : (a, b) → H; f (l)(·)es t ∈ Lp(a, b;X), l = 0, . . . , k},

with the norm ‖f‖
W

k,p
s (a,b;X)

= ‖fes t‖W k,p(a,b;X).

The results concerning the solvability of problems (1) and (2) are
established in the following two theorems.

Theorem 1 [1]. Let t > 0. Let us assume that the conditions (HV)

and (HA) are fulfilled. If u0 ∈ V , u1 ∈ H and f ∈ W 1,1(0, t;H), then
there exists the unique function u ∈ W 2,∞(0, t;H)

⋂
W 1,∞(0, t;V ),

(strong solution) which satisfies the equation a.e. on (0, t) and the

initial conditions from (1).

Theorem 2 [1]. Let t > 0. Let us assume that the conditions (HV)

and (HA) are fulfilled. If u0 ∈ V and f ∈ W 1,1(0, t;H), then there

exists the unique function v ∈ W 1,2(0, t;V ) which satisfies a. e. on

(0, t) the equation and the initial conditions from (2).

Lemma 1. Assume that conditions (HV) and (HA) are fulfilled. If

u0 ∈ V and f ∈ W 1,1(0, t;H), for every t > 0, then there exists the
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constant C > 0 such that for the strong solution v to the problem (2)

the following estimate is valid:

|v(t)| ≤ C(γ)
(
|u0|+

∫ t

0

eγτ |f(τ)|dτ
)
e−γt,∀t ≥ 0, γ = γ0 γ1.

Lemma 2. Assume that conditions (HV) and (HA) are fulfilled. If

u0 ∈ V, u1 ∈ H and f ∈ W 1,1(0, t;H), for every t > 0, then there exists

the constant C = C(γ) > 0 and δ = δ(γ) ∈ (0, 1/2), such that for the

strong solution u to the problem (1) the following estimate is valid:

|u′(t)|+ |A1/2u(t)| ≤ C
(
||u0||+ |u1|+

∫ t

0

eδτ |f(τ)|dτ
)
e−δ t,∀t ≥ 0.

In what follows, denote by

K(t, τ) =
1

2
√
π

(
K1(t, τ, ε) + 3K2(t, τ)− 2K3(t, τ)

)
,

K1(t, τ) = exp
{

3t−2τ
4

}
λ
(
2t−τ

2
√

t

)
, K2(t, τ) = exp

{
3t+6τ

4

}
λ
(
2t+τ

2
√

t

)
,

K3(t, τ) = exp
{
τ
}
λ
(
t+τ

2
√

t

)
, λ(s) =

∫
∞

s
e−η2dη.

The properties of kernel K(t, τ) are collected and proved in [4] and
they allow to obtain the following lemma.

Lemma 3. Assume that conditions (HV) and (HA). If u0 ∈ V,
u1 ∈ H and f ∈ W 1,1

α (0,∞;H), with some α > 0, then the function

w(t) =

∫
∞

0

K(t, τ)u(τ) dτ,

where u is the strong solution to the problem (2), verifies the system






w′(t) +Aw(t) = F0(t), t > 0, in H,

w(0) =

∫
∞

0

e−τ u(2τ) dτ,

F0(t) =
1
√
π

[
2 exp

{3t

4

}
λ
(√

t
)
− λ

(1

2

√
t
)]

u1 +

∫
∞

0

K(t, τ) f(τ) dτ.
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The main result of the paper is presented in the following theorem and

it follows from the Lemmas 1-3.
Theorem 3. Assume that conditions (HV) and (HA) are fulfilled.

If u0 ∈ V, u1 ∈ H and f ∈ W 1,1
α (0,∞;H), with some α > 0, then there

exists the constant C(γ, α) > 0 and δ(γ, α) > 0, such that for the strong

solutions u and v to the respective problems (1) and (2) the estimate

|u(t)− v(t)| ≤ C
(
||u0||+ |u1|+ ||f ||

W
1,1
α (0,∞;H)

)
e−δt, ∀t ≥ 0,

is true.
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Boundary value problems for the Schrödinger

equation with conditions at infinity

Oleksandr Pokutnyi

Abstract

The paper is devoted to investigation of boundary value pro-
blems for the evolution Schrödinger equation. Necessary and suf-
ficient conditions of the existence of bounded solutions are obtai-
ned under assumption that the homogeneous equation admits an
exponential dichotomy on the semi-axes.

Keywords: Moore-Penrose pseudoinvertible operator, expo-
nential dichotomy, quantuum chaos.

1 Introduction

Boundary-value problems for the Schrödinger equation in a Hilbert
space are encountered in quantum mechanics, quantuum functional
analysis and other fields of physics and mathematics. The paper de-
als with the problem of existence and construction of the solutions of
boundary-value problems for a nonstationary Schrödinger equation in
a Hilbert space. The investigation of the nonstationary equation is
important because, in numerous cases, it is necessary to find the appli-
cations in quantum functional analysis and differential equations [1].

2 Statement of the problem

In a Hilbert spaceH, we consider the following boundary value problem

dϕ(t)

dt
= −iH(t)ϕ(t) + f(t), t ∈ R (1)

c©2017 by Oleksandr Pokutnyi
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lϕ(·) = α. (2)

Unbounded operator H(t) has the form H(t) = H0 + V (t). Here,
H0 = H∗

0
is a selfadjoint operator with dense domain of definition

D = D(H0) ⊂ H and the mapping t → V (t) is strongly continuous, l
is linear and bounded operator which translates bounded solutions of
(1) into the Hilbert space H1. We define an operator-valued function

Ṽ (t) = eitH0V (t)e−itH0 .

In this case, the Dyson representation is true for Ṽ (t) and we can find
the evolutionary operator Ũ(t, s). If U(t, s) = e−itH0Ũ(t, s)eisH0 then
ψs(t) = U(t, s)ψ is a weak solution of the homogeneous equation

dϕ0

dt
= −iH(t)ϕ0(t) (3)

with condition ψs(s) = ψ in a sense that, for any η ∈ D, the function
(η, ψs(t)) is differentiable and

d

dt
(η, ψs(t)) = −i(H0η, ψs(t))− i(V (t)η, ψs(t)), t, s ∈ R.

Definition 1 [2]. Evolution operator {U(t, s)| t ≥ s; t, s ∈ J}
admits an exponential dichotomy on J , if there exist projector-valued

function {P (t)|t ∈ J} in L(B) and real constants α > 0 and M ≥ 1
such that:

(i) U(t, s)P (s) = P (t)U(t, s), t ≥ s;

(ii) Restriction U(t, s) ↾N(P (s)), t ≥ s of operator U(t, s) onto kernel

of N(P (s)) of projector P (s) is an isomorphism from N(P (s)) onto

N(P (t)). Define U(s, t), as inverse

U(s, t) = (U(t, s) ↾N(P (s)))
−1 : N(P (s)) → N(P (s))

(iii) ‖U(t, s)P (s)‖ ≤Me−α(t−s), t ≥ s;

(iiii) ‖U(t, s)(I − P (s))‖ ≤Me−α(s−t), s ≥ t.
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3 Bounded solutions

Lemma. Let {U(t, s), t ≥ s ∈ R} is strongly continuous evolution

operator of equation (3). Suppose that the following conditions are

true:

1. Operator U(t, s) admits an exponential dichotomy on the semi-

axes R
+

0
and R

−

0
with projector-valued functions P+(t) and P−(t), re-

spectively.

2. Operator D = P+(0)− (I−P−(0)) has Moore-Penrose pseudoin-

vertible [3].

Then the following assertions are true.

1. There exist weak solutions of equation (1), bounded on the whole

axis if and only if the vector-function f ∈ BC(R,H) satisifies condition

∫
+∞

−∞

H(t)f(t)dt = 0, (4)

where H(t) = PN(D∗)P−(0)U(0, t).
2. Under condition (4), weak solutions of the equation (1), bounded

on the whole axis, has the form

ϕ0(t, c) = U(t, 0)P+(0)PN(D)c+ (G[f ])(t, 0) ∀c ∈ H, (5)

where

(G[f ])(t, s) =






∫
t

s
U(t, τ)P+(τ)f(τ)dτ −

∫
+∞

t
U(t, τ)(I − P+(τ))f(τ)dτ+

+U(t, s)P+(s)D
+[
∫
∞

s
U(s, τ)(I − P+(τ))f(τ)dτ+

+
∫
s

−∞
U(s, τ)P−(τ)f(τ)dτ ], t ≥ s

∫
t

−∞
U(t, τ)P−(τ)f(τ)dτ −

∫
s

t
U(t, τ)(I − P−(τ))f(τ)dτ+

+U(t, s)(I − P−(s))D
+[
∫
∞

s
U(s, τ)(I − P+(τ))f(τ)dτ+

+
∫
s

−∞
U(s, τ)P−(τ)f(τ)dτ ], s ≥ t

Theorem. Let Q = lU(·, s). Boundary value problem (1), (2) has:

1) bounded strong generalized solutions if and only if the following

condition is true

P
N(Q

∗

)
(α− l(G[f ])(·, 0)) = 0; (6)
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if α− l(G[f ])(·, 0) ∈ R(Q), then solutions will be classical bounded;

a2) bounded pseudosolutions if and only if the following condition

is true

P
N(Q

∗

)
(α− l(G[f ])(·, 0)) 6= 0; (7)

b) under condition of solvability (6) or (7) bounded solutions has

the following form

ϕ0(t, c) = U(t, 0)P+(0)PN(D)PN(Q)c+ (G1[f, α])(t, 0), ∀c ∈ H,

where generalized Green operator (G1[f, α])(t, 0) has the form

(G1[f, α])(t, s) = U(t, s)P+(s)PN(D)Q
+
(α− l(G[f ])(·, s))+(G[f ])(t, s).
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Computation of common Hilbert series for the

differential system s(1, 3, 5, 7) using the residue

theorem

Victor Pricop

Abstract

Till now the Hilbert series was computing using the genera-
lized Sylvester method that is not always simple. Getting a new,
simpler methods for obtaining these series is welcome. This work
is about on calculation of common Hilbert series for the differen-
tial system s(1, 3, 5, 7) using the residue theorem.

Keywords: Hilbert series, Sibirsky algebra, Krull dimen-
sion).

1 Introduction

An important tool in the qualitative study of two-dimensional sys-
tems of differential equations is the Hilbert series of Sibirsky algebras.

One problem with Hilbert series corresponding to the differential
systems is to determine a relations between them. In the work [1] were
found some relations between generalized Hilbert series of differential
systems with homogeneous nonlinearities of odd degree.

Before finding some relations between common Hilbert series of dif-
ferential systems with homogeneous nonlinearities of odd degree they
should be built. The construction of Hilbert series with generalized Sy-
lvester method [2] is not always simple. From [3] it is known a method
of computing common Hilbert series of invariants ring using the resi-
dues. This method was adapted for computation of common Hilbert

c©2017 by Victor Pricop
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series for Sibirsky algebras of comitants and invariants of differential
systems. By this method, some unknown till now common Hilbert se-
ries of algebras of comitants and invariants was obtained. Computation
more Hilbert series will help us find easier relationships between these
series.

A common Hilbert series of the differential systems s(1), s(3), s(5),
s(7), s(1, 3), s(1, 5), s(1, 7), s(1, 3, 5), s(1, 3, 7) are known. So, a com-
putation of other series of the combination of these systems present an
special interest.

2 Computation of common Hilbert series for

the differential system s(1, 3, 5, 7)

Let G be a linearly reductive group over an algebraically clo-
sed field K and V an n-dimensional rational representation. Through
H(K[V ]G, t) is denoted the Hilbert series of invariants ring K[V ]G [5].

From [5] is known

Theorem 1.

H(K[V ]G, t) =
1

2πi

∫

S1

1

det(I − tρV (z))

dz

z
, (1)

where S1 ⊂ C is the unit circle {z : |z| = 1}.

This formula is used on computing the common Hilbert series of
invariants rings.

Using the Residue Theorem and corresponding generating function
[4] the formula (1) can be adapted for computing the common Hilbert
series for the Sibirsky algebras of comitants and invariants of differential
systems as follows

Theorem 2.

HSIΓ(t) =
1

2πi

∫

S1

ϕ
(0)
Γ (z)

z
dz,
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where S1 ⊂ C is the unit circle {z : |z| = 1}, ϕ
(0)
Γ (z) is the correspon-

ding generating function [4], ϕ
(0)
Γ (z) = (1−z−2)ψ

(0)
m0

(z)ψ
(0)
m1

(z)...ψ
(0)
mℓ

(z),

ψ(0)
mi

(z) =






1
(1−zt)(1−z−1t) for mi = 0,

1
(1−zmi+1t)(1−z−mi−1t)

∏mi
k=1

(1−zmi−2k+1t)2
for mi 6= 0,

Γ = {mi}
ℓ
i=0 and consists of a finite number (ℓ <∞) of distinct natural

numbers.

In contrast to the construction methods of Hilbert series, exposed
in [4], using the theorem 2 it was obtained a common Hilbert series
for the Sibirsky graded algebras of comitants S1,3,5,7 and invariants
SI1,3,5,7 of the differential system s(1, 3, 5, 7).
Theorem 3. For the differential system s(1, 3, 5, 7) the following com-
mon Hilbert series for Sibirsky algebras of comitants S1,3,5,7 and inva-
riants SI1,3,5,7 was obtained

HS1,3,5,7(t) =
U(t) + 2298270315143980746t60+ t120 U(t−1)

(1− t)14(1 + t)19(1 + t2)8(1− t3)12(1− t5)8(1− t7)4(1− t9)
,

where

U(t) = 1 + 6t+ 20t2 + 87t3 + 642t4 + 4481t5 + 26793t6 + 141973t7+

+684115t8 + 3033350t9 + 12465139t10 + 47749507t11 + 171414077t12+

+579433144t13 + 1852114710t14 + 5618767624t15 + 16230539293t16+

+44770726947t17 + 118233818156t18 + 299625404135t19+

+730145608913t20 + 1714167261299t21 + 3883773551652t22+

+8505306230645t23 + 18029418149708t24 + 37042309655531t25+

+73851959357894t26 + 143039363140182t27 + 269416219454043t28

+493944596168225t29 + 882268074320900t30+

+1536543007952396t31 + 2611196867637156t32+

+4333024660344442t33 + 7025611335473678t34+
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+11137398421309529t35 + 17271787147116907t36+

+26216525599773850t37 + 38968364210329669t38+

+56747752371861786t39 + 80997424826732157t40+

+113358368681589288t41 + 155617153462411693t42+

+209620178940739772t43 + 277153165150321324t44+

+359788117447054402t45 + 458704770582751394t46+

+574498645384155800t47 + 706992640391687667t48+

+855072713288320920t49 + 1016569872742669961t50+

+1188209740459545784t51 + 1365646993055807450t52+

+1543595104982837472t53 + 1716052512321252802t54+

+1876615582976246945t55 + 2018857942986265569t56+

+2136746272693569424t57 + 2225056091622875140t58+

+2279748435060291614t59 ,

HSI1,3,5,7(t) =
V (t) + 32933502505147932t52 + t104 V (t−1)

(1− t)15(1 + t)19(1 + t2)9(1− t3)12(1− t5)7(1− t7)3
,

where

V (t) = 1 + 5t+ 15t2 + 70t3 + 546t4 + 3691t5 + 21211t6 + 108097t7+

+501215t8 + 2135708t9 + 8420376t10 + 30894213t11 + 106057925t12+

+342316946t13 + 1043225615t14 + 3012988906t15 + 8273667765t16+

+21663519624t17 + 54225659702t18 + 130054129145t19+

+299492368986t20 + 663439513913t21 + 1416140486098t22+

+2917219852903t23 + 5807630254373t24 + 11187994444298t25+

+20880385856690t26 + 37794195363608t27 + 66411190209119t28+

+113391841520052t29 + 188282608991333t30+

+304271520124478t31 + 478898737877115t32+

+734584562409596t33 + 1098797608776741t34+
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+1603661779481979t35 + 2284804664001899t36+

+3179293473234493t37 + 4322594520474429t38+

+5744627532607767t39 + 7465155325802975t40+

+9488929831214829t41 + 11801175204390804t42+

+14364091127469868t43 + 17115070624832596t44+

+19967223601230372t45 + 22812575427180540t46+

+25527987499683011t47 + 27983465544664079t48+

+30052140716959960t49 + 31620895669339212t50+

+32600424240909358t51 .

From this theorem result that the Krull dimension [4] of Sibirsky
graded algebra S1,3,5,7 (respectively SI1,3,5,7) is equal to 39 (respectively
37).

We note that the Krull dimension plays an important role in solving
the center-focus problem for the differential system s(1, 3, 5, 7) [6].

Remark. We note that the Hilbert series of Sibirsky graded algebra

of comitants HSΓ
(t) = HSIΓ∪{0}

(t), where Γ = {m1,m2, ...,mℓ} 6∋ {0}.

3 Conclusion

In this paper was computing the common Hilbert series of Sibirsky
graded algebras for the differential system s(1, 3, 5, 7). This method
is easier than generalized Sylvester method, but only allows for the
computation of common Hilbert series of Sibirsky graded algebras of
invariants and comitants of differential systems, but it also allows us
to obtain some new unknown series till now.

Acknowledgments. 15.817.02.03F has supported part of the re-
search for this paper.
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Quartic differential systems with an affine real

invariant straight line of algebraic multiplicity

two and three

Alexandru Şubă, Olga Vacaraş

Abstract

In this paper we give the coefficient conditions when the diffe-
rential polynomial system of the fourth degree has an affine real
invariant straight line of algebraic multiplicity two (three).

Keywords: quartic differential system, invariant straight
line, algebraic multiplicity.

1 Introduction

We consider the real polynomial system of differential equations

dx

dt
= P (x, y) ,

dy

dt
= Q (x, y) , (1)

and the vector field X = P (x, y) ∂
∂x

+Q (x, y) ∂
∂y

associated to system
(1).

Denote n = max {deg (P ) ,deg (Q)}.

A curve f(x, y) = 0, f ∈ C[x, y] is said to be an invariant algebraic

curve of (1) if there exists a polynomial Kf ∈ C[x, y], deg(Kf ) ≤ n− 1
such that the identity X(f) ≡ f(x, y)Kf (x, y) holds.

Definition 1 [1] An invariant algebraic curve f of degree d for

the vector field X has algebraic multiplicity m when m is the greatest
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positive integer such that the m-th power of f divides Ed(X), where

Ed(X) = det







υ1 υ2 ... υk
X(υ1) X(υ2) ... X(υk)
... ... ... ...

X
k−1(υ1) X

k−1(υ2) ... X
k−1(υk)





 ,

and υ1, υ2, ..., υk is a basis of Cd[x, y].

If d = 1 then υ1 = 1, υ2 = x, υ3 = y and

E1(X) = P · X(Q)−Q · X(P ).

2 The coefficient conditions when the differen-

tial system of the fourth degree has an affine

real invariant straight line of algebraic mul-

tiplicity two and three

We consider the differential system of the fourth degree

ẋ = P0 + P1(x, y) + P2(x, y) + P3(x, y) + P4(x, y) ≡ P (x, y),
ẏ = Q0 +Q1(x, y) +Q2(x, y) +Q3(x, y) +Q4(x, y) ≡ Q(x, y),

(2)

where Pk and Qk, k = 1, 2, 3, 4 are homogeneous polynomials in x and
y of degree k.

Suppose that

yP4(x, y)− xQ4(x, y) 6≡ 0, gcd(P,Q) = 1, (3)

i.e. at infinity the system (2) has at most five distinct singular points
and the right-hand sides of (2) do not have the common divisors of
degree greatest that 0.

Let the system (2) has a real invariant straight line l. By an affine
transformation we can make l to be described by the equation x = 0.
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Then, the system (2) looks as:

ẋ = x(a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3+

+a8x
2y + a9xy

2 + a10y
3),

ẏ = b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2 + b6x
3 + b7x

2y+
+b8xy

2 + b9y
3 + b10x

4 + b11x
3y + b12x

2y2 + b13xy
3 + b14y

4.

(4)

For (4) the determinant E1(X) is a polynomial in x and y of degree 11.
Theorem 1 For quartic differential system {(4), (3)} the algebraic

multiplicity of the invariant straight line x = 0 is greater or equal two

if and only if at least one of the following five sets of conditions:

1) a1 = a3 = a6 = a10 = 0;
2) a3 = a6 = a10 = b2 − a1 = b5 = b9 = b14 = 0, a1 6= 0;
3) a6 = a10 = 0, b0 = (−a2

1
+ a1b2)/a3, b5 − a3 = b9 = b14 = 0;

4) a10 = 0, b0 = (a1(b5−a3))/a6, b2 = (−a2
3
+a1a6+a3b5)/a6, b9−

a6 = b14 = 0;
5) b0 = (a1(b9 − a6))/a10, b2 = (a1a10 − a3a6 + a3b9)/a10, b5 =

(a10a3 − a2
6
+ a6b9)/a10, b14 = a10

is satisfied.

Theorem 2 For quartic differential system {(4), (3)} the algebraic

multiplicity of the invariant straight line x = 0 is greater or equal three

if and only if at least one of the following twelve sets of conditions:

1) a1 = a2 = a3 = a5 = a6 = a9 = a10 = 0;
2) a1 = a3 = 0, a5 = a2b2/b0, a6 = 0, a9 = a2b5/b0, a10 = b9 =

b14 = 0, a2 6= 0;
3) a1 = a3 = a6 = 0, a9 = a5b5/b2, a10 = 0, b0 = a2b2/a5, b9 =

b14 = 0;
4) a1 = a2 = a3 = a5 = a6 = a10 = b0 = b2 = b9 = b14 = 0, a9 6= 0;

5) a1 = a3 = a5 = a6 = a9 = a10 = b2 = b5 = b9 = b14 = 0;
6) a2 = (−a5b0+a1b4)/a1, a3 = a6 = a10 = 0, b2−a1 = b5 = 0, b1 =

(b0(−a5b0+a1b4))/a
2

1
, b8 = (a1a5+a9b0)/a1, b9 = 0, b13−a9 = b14 = 0;

7) a6 = a10 = 0, b0 = (a1(b2 − a1))/a3, b2 = 2a1, b5 = a3, b8 =
(a3a5 + a1a9)/a3, b4 = (a2a3 + a1a5)/a3, b9 = 0, b13 − a9 = b14 = 0;

8) a6 = a10 = 0, b0 = (a1(b2 − a1))/a3, b1 = (a2(b2 − a1))/a3, b4 =
(a2a3 − a1a5 + a5b2)/a3, b8 = (a3a5 − a1a9 + a9b2)/a3, b5 = a3, b9 =
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b13 − a9 = b14 = 0, b2 − 2a1 6= 0;
9) a1 = ((b5−a3)(2a3−b5))/a6, b0 = ((a3−b5)

2(2a3−b5))/a
2

6
, b1 =

(2a2
3
a5−3a2a3a6+2a3a6b4−3a3a5b5+2a2a6b5−a6b4b5+a5b

2

5
)/a2

6
, b2 =

((b5−a3)(3a3−b5))/a6, b8 = (a5a6−a3a9+a9b5)/a6, b9−a6 = b13−a9 =
b14 = 0, a10 = 0;

10) a10 = 0, b0 = (a1(b5 − a3))/a6, b1 = (a2(b5 − a3))/a6, b2 =
(−a2

3
+ a1a6 + a3b5)/a6, b4 = (−a3a5 + a2a6 + a5b5)/a6, b8 = (a5a6 −

a3a9 + a9b5)/a6, b9 − a6 = b13 − a9 = b14 = 0;
11) b0 = (a1(b9 − a6))/a10, b2 = (a1a10 − a3a6 + a3b9)/a10, b1 =

(a2(b9 − a6))/a10, b4 = (a10a2 − a5a6 + a5b9)/a10, b5 = (a10a3 − a2
6
+

a6b9)/a10, b8 = (a10a5 − a6a9 + a9b9)/a10, b13 = a9, b14 = a10;
12) a1 = ((b9 − a6)(a10a3 + 2a2

6
− 3a6b9 + b2

9
))/a2

10
, b0 = (−a1a6 +

a1b9)/a10, b2 = (a1a10 − a3a6 + a3b9)/a10, b1 = −(a2
10
a3a5 + a2

10
a2a6 +

2a10a5a
2

6
−a10a3a6a9−2a3

6
a9−a2

10
a3b8−2a10a

2

6
b8−a2

10
a2b9−3a10a5a6b9+

a10a3a9b9 + 5a2
6
a9b9 + 3a10a6b8b9 + a10a5b

2

9
− 4a6a9b

2

9
− a10b8b

2

9
+

a9b
3

9
)/a3

10
, b4 = (a2

10
a2 − 3a10a5a6 + 2a2

6
a9 + 2a10a6b8 + 2a10a5b9 −

3a6a9b9 − a10b8b9 + a9b
2

9
)/a2

10
, b5 = (a10a3 − a2

6
+ a6b9)/a10, b13 =

a9, b14 = a10
hold.
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Improved Direct and Inverse Theorems in

Weighted Lebesgue Spaces with Variable

Exponent

Ahmet Testici, Daniyal M. Israfilov

Abstract

The improved direct, inverse and simultaneous theorems of
approximation theory in the weighted variable exponent Le-
besgue spaces in the term of the fractional order modulus of
smoothness are obtained.

Keywords: Direct theorems, inverse theorems, Mucken-
houpt weights, fractional modulus of smoothness, simultaneous
approximation.

1 Introduction

Let T := [0, 2π] and let p (·) : T → [0,∞) be a Lebesgue measurable
2π periodic function. The variable exponent Lebesgue space Lp(·) (T)
is defined as the set of all Lebesgue measurable 2π periodic functions f
such that ρp(·) (f) :=

∫
2π

0
|f (x)|p(x) dx < ∞. During this work we sup-

pose that the considered exponent functions p (·) satisfy the conditions

1 ≤ p− := ess infx∈T p (x) ≤ ess supx∈T p (x) := p+ < ∞,
|p (x)− p (y)| ln (1/ |x− y|) ≤ c(p) < ∞, x, y ∈ T, 0 < |x− y| ≤ 1/2.

The class of these exponents we denote by P (T). If p (·) ∈ P (T)
and in addition p− > 1, then we say that p (·) ∈ P0 (T). Equipped with
the norm ‖f‖p(·) =

{
inf λ > 0 : ρp(·) (f /λ) ≤ 1

}
the space Lp(·) (T)

becomes a Banach space.

c©2017 by Ahmet Testici, Daniyal M. Israfilov
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Let ω be a weight function on T, i.e. an almost everywhere positive
and Lebesgue integrable function on T. For a given weight ω we define

the weighted variable exponent Lebesgue space L
p(·)
ω (T) as the set of

all measurable functions f on T such that fω ∈ Lp(·)(T). The norm of

f ∈ L
p(·)
ω (T) can be defined as ‖f‖p(·),ω := ‖fω‖p(·). In our discussions

we assume that ω ∈ Ap(·) (T).
Definition 1 We say that ω ∈ Ap(·) (T) if the inequality

sup
I⊂T

|I|−1 ‖ωχ
I
‖p(·)

∥
∥ω−1χ

I

∥
∥
p
′

(·)
< ∞, 1/p (·) + 1/p

′

(·) = 1,

holds, where |I| is the Lebesgue measure of the interval I ⊂ T with the
characteristic function χ

I
.

Let f ∈ L1 (T) with
∫
2π

0
f (x) dx = 0. For α ∈ R

+ the

αth integral of f is defined by Iα (f, x) :=
∑

k∈Z∗

ck(f) (ik)
−α eikx,

where (ik)−α := |k|−α e(−1/2)πiα sign k, Z
∗ := {±1,±2,±3, ...} and

ck, k ∈ Z
∗, are the Fourier coefficients of f with respect to ex-

ponential system. For α ∈ (0, 1) let f (α) (x) := d
dx
I1−α (f, x). If

r ∈ R
+ with integer part [r], and α := r − [r], then the rth deri-

vative of f is defined by f (r) (x) :=
(
f (α) (x)

)([r])
= d[r]+1

dx[r]+1
I1−α (f, x)

if the right sides exist [1, p. 347]. Let x, t ∈ R, r ∈ R
+ and let

∆r
tf (x) :=

∑
∞

k=0
(−1)k [Cr

k] f (x+ (r − k) t) for f ∈ L1 (T) , where
[Cr

k ] := r (r − 1) (r − 2) ... (r − k + 1) /k! for k > 1, [Cr
k] := r for

k = 1 and [Cr
k ] := 1 for k = 0.

Definition 2 Let f ∈ L
p(·)
ω (T) , p (·) ∈ P0 (T), ω (·) ∈ Ap(·) (T) and

r ∈ R
+. We define the rth modulus of smoothness as

Ωr (f, δ)p(·),ω := sup
|h|≤δ

∥
∥
∥
∥
∥
∥

1

h

h∫

0

∆r
tf (x) dt

∥
∥
∥
∥
∥
∥
p(·),ω

, δ > 0.

Clearly Ω (f, δ)p(·),ω is well defined because by Theorem on the

boundedness of maximal function in L
p(·)
ω (T) proved in [2] we have

Ωr (f, δ)p(·),ω ≤ c(p) ‖f‖p(·),ω.
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2 Main Results

Let Sn (f) be the nth partial sum of the Fourier series of f ∈ L
p(·)
ω (T)

and let W
p(·)

ω,β (T):=
{
f ∈ L

p(·)
ω (T) : f (β) ∈ L

p(·)
ω (T) for β ∈ R

+

}
be the

weighted variable exponent Sobolev space. By c(·), c(·, ·), c(·, ·, ·) we
denote the constants depending in general on the parameters given in
the brackets. Our main results are following.

Theorem 1 Let p (·) ∈ P0 (T), ω (·) ∈ Ap(·) (T) and let r ∈ R
+. If

f ∈ L
p(·)
ω (T), then there exists a constant c(p, r) such that

c (p, r)

nr

{
n∑

ν=1

νβr−1Eβ
ν (f)p(·),ω

}1/β

≤ Ωr (f, 1/n)p(·),ω , n = 1, 2, ...

where β:=max {2, p+}.

Theorem 2 Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) and let r ∈ R
+. If

f ∈ L
p(·)
ω (T), then there exists a constant c(p, r) such that

Ωr (f, 1/n)p(·),ω ≤
c (p, r)

nr

{
n∑

ν=0

(ν + 1)γr−1 Eγ
ν (f)p(·),ω

}
1/γ

, n = 1, 2, ...

where γ := min {2, p−}.

Theorem 3 Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) and let f ∈

L
p(·)
ω (T). If

∞∑

k=1

kγr−1Eγ
ν (f)p(·),ω < ∞ for some r ∈ R

+and γ :=

min {2, p−}, then f ∈ W
p(·)
ω,r (T) and there exists a constant c(p, r) such

that for every n = 1, 2, 3, ...,

En

(
f (r)

)

p(·),ω
≤ c (p, r)



nrEn (f)p(·),ω+

{
∞∑

ν=n+1

νγr−1Eγ
ν (f)p(·),ω

}1/γ


.

Corollary 1 Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) and let r ∈ R
+.

If f ∈ W
p(·)
ω,r (T) and β := max {2, p+}, then there exists a constant

337



Ahmet Testici et al.

c(p, r) such that for every n = 1, 2, 3, ...

{
n∑

ν=1

νβr−1Eβ
ν (f)p(·),ω

}
1/β

≤ c (p, r)
∥
∥
∥f (r)

∥
∥
∥
p(·),ω

.

Corollary 2 Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) and let f ∈

L
p(·)
ω (T). If

∞∑

k=1

kγα−1Eγ
ν (f)p(·),ω for some α ∈ R

+and γ :=

min {2, p−}, then there exists a positive constant c(p, α, r) such that
for every n = 1, 2, 3, ... and r ∈ R

+

Ωr

(
f (α), 1/n

)

p(·),ω
≤ c (p, α, r)





{
∞∑

ν=n+1

νγα−1Eγ
ν (f)p(·),ω

}1/γ

+

+
1

nr

{
n∑

ν=1

νγ(r+α)−1Eγ
ν (f)p(·),ω

}
1/γ



 .
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Morphisms and antimorphisms of Boolean

evolution and antievolution functions

Serban E. Vlad

Abstract

The Boolean evolution and antievolution functions model the
asynchronous circuits from electronics. Our purpose is to intro-
duce their morphisms and antimorphisms.

Keywords: Boolean function, morphism, antimorphism,
evolution function, antievolution function

We denote B = {0, 1} the binary Boole algebra and N = {−1, 0, 1, ...}.
Let Φ,Ψ, h, h′ : Bn → Bn, for which we define ∀i ∈ {1, ..., n},∀ν ∈

Bn,∀µ ∈ Bn,Φν
i (µ) =

{
µi, if νi = 0,

Φi(µ), if νi = 1
. If ∀ν ∈ Bn,∀µ ∈ Bn,

h(Φν(µ)) = Ψh′(ν)(h(µ)), we say that the morphism (h, h′) is defined,
from Φ to Ψ and if ∀ν ∈ Bn,∀µ ∈ Bn, h(µ) = Ψh′(ν)(h(Φν(µ))), we
say that the antimorphism (h, h′)∼ is defined, from Φ to Ψ. The sets
of the morphisms and of the antimorphisms from Φ to Ψ are denoted
withHom(Φ,Ψ),Hom∼(Φ,Ψ).We denote Π̂n = {α|α : N −→ Bn,∀i ∈
{1, ..., n}, {k|k ∈ N, αk

i := αi(k) = 1} is infinite}. The functions Φ̂, Φ̂∼

given by Bn × N × Π̂n ∋ (µ, k, α) 7−→ Φ̂α(µ, k), Φ̂∼α(µ, k) ∈ Bn,

Φ̂α(µ, k) =






µ, if k = −1,

Φα0

(µ), if k = 0,

(Φαk

◦ Φαk−1

◦ ... ◦ Φα0

)(µ), if k ≥ 1

, Φ̂∼α(µ, k) =






µ, if k = −1,

Φα0

(µ), if k = 0,

(Φα0

◦Φα1

◦ ... ◦Φαk

)(µ), if k ≥ 1

are called evolution and anti-

evolution function and they model the asynchronous circuits, re-
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spectively the time reversed asynchronous circuits. We have by defi-
nition the orbit Ôr

α

Φ(µ) = {Φ̂α(µ, k)|k ∈ N } and the omega limit

set ω̂α
Φ(µ) = {λ|λ ∈ Bn, {k|k ∈ N , Φ̂α(µ, k) = λ} is infinite} and si-

milarly for Φ̂∼. For α : N −→ Bn we also define ĥ′(α) : N −→ Bn by
∀k ∈ N, ĥ′(α)k = h′(αk) and Ωn = {h′|ĥ′(Π̂n) ⊂ Π̂n}. Our purpose is
to introduce the morphisms and the antimorphisms of evolution and
antievolution functions.

Definition 1. We consider the functions Φ,Ψ, h, h′ : Bn −→ Bn and
we suppose that h′ ∈ Ωn. We say that the couple (h, h′) is amorphism

from the evolution function Φ̂ to the evolution function Ψ̂, denoted
by (h, h′) : Φ̂ −→ Ψ̂, if ∀µ ∈ Bn,∀k ∈ N ,∀α ∈ Π̂n, h(Φ̂

α(µ, k)) =

Ψ̂ĥ′(α)(h(µ), k); (h, h′) is a morphism from the antievolution function
Φ̂∼ to the antievolution function Ψ̂∼, denoted by (h, h′) : Φ̂∼ −→ Ψ̂∼,

if ∀µ ∈ Bn,∀k ∈ N ,∀α ∈ Π̂n, h(Φ̂
∼α(µ, k)) = Ψ̂∼ĥ′(α)(h(µ), k). We

denote withHom(Φ̂, Ψ̂), Hom(Φ̂∼, Ψ̂∼) the previous sets of morphisms.

Theorem 1. We get Hom(Φ̂, Ψ̂) = Hom(Φ̂∼, Ψ̂∼) = {(h, h′)|(h, h′) ∈
Hom(Φ,Ψ) and h′ ∈ Ωn}.

Theorem 2. For Γ : Bn → Bn, we have (h, h′) ∈ Hom(Φ̂, Ψ̂), (g, g′) ∈
Hom(Ψ̂, Γ̂) =⇒ (g◦h, g′◦h′) ∈ Hom(Φ̂, Γ̂) and (h, h′) ∈ Hom(Φ̂∼, Ψ̂∼),
(g, g′) ∈ Hom(Ψ̂∼, Γ̂∼) =⇒ (g ◦ h, g′ ◦ h′) ∈ Hom(Φ̂∼, Γ̂∼).

Definition 2. The morphism (g ◦ h, g′ ◦ h′) is by definition the com-

position of (g, g′) and (h, h′) and its notation is (g, g′) ◦ (h, h′).

Theorem 3. Let (h, h′) ∈ Hom(Φ̂, Ψ̂), (g, g′) ∈ Hom(Φ̂∼, Ψ̂∼).

Then ∀µ ∈ Bn,∀α ∈ Π̂n, h(Ôr
α

Φ(µ)) = Ôr
ĥ′(α)

Ψ (h(µ)), g(Ôr
∼α

Φ (µ)) =

Ôr
∼ĝ′(α)

Ψ (g(µ)), h(ω̂α
Φ(µ)) = ω̂

ĥ′(α)
Ψ (h(µ)), g(ω̂∼α

Φ (µ)) = ω̂
∼ĝ′(α)
Ψ (g(µ)).

Theorem 4. For any µ ∈ Bn and any α ∈ Π̂n, if Φ̂α(µ, ·) is pe-
riodic, with the period p ≥ 1 : ∀k ∈ N , Φ̂α(µ, k) = Φ̂α(µ, k + p)

and (h, h′) ∈ Hom(Φ̂, Ψ̂), then Ψ̂ĥ′(α)(h(µ), ·) is periodic with the
period p; if we suppose that Φ̂∼α(µ, ·) is periodic, with the period
p ≥ 1 : ∀k ∈ N , Φ̂∼α(µ, k) = Φ̂∼α(µ, k+p) and (h, h′) ∈ Hom(Φ̂∼, Ψ̂∼),

then Ψ̂∼ĥ′(α)(h(µ), ·) is periodic with the period p.
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Theorem 5. Let µ ∈ Bn and we suppose that Φ(µ) = µ. If
(h, h′) ∈ Hom(Φ̂, Ψ̂), then Ψ(h(µ)) = h(µ) and ∀α ∈ Π̂n,∀k ∈

N , Ψ̂ĥ′(α)(h(µ), k) = h(µ); if (h, h′) ∈ Hom(Φ̂∼, Ψ̂∼), then Ψ(h(µ)) =

h(µ) and ∀α ∈ Π̂n,∀k ∈ N , Ψ̂∼ĥ′(α)(h(µ), k) = h(µ).

Definition 3. We ask that h′ ∈ Ωn. We say that the couple
(h, h′) is an antimorphism from Φ̂∼ to Ψ̂, denoted (h, h′)∼ :
Φ̂∼−→Ψ̂ or simply (h, h′)∼, if ∀µ ∈ Bn,∀k ∈ N ,∀α ∈ Π̂n, h(µ) =

Ψ̂ĥ′(α)(h(Φ̂∼α(µ, k)), k) and (h, h′) is by definition an antimorphism

from Φ̂ to Ψ̂∼, denoted (h, h′)∼ : Φ̂−→Ψ̂∼ or (h, h′)∼, if ∀µ ∈ Bn,∀k ∈

N ,∀α ∈ Π̂n, h(µ) = Ψ̂∼ĥ′(α)(h(Φ̂α(µ, k)), k). We use the notation
Hom∼(Φ̂∼, Ψ̂), Hom∼(Φ̂, Ψ̂∼) for the previous sets of antimorphisms.

Theorem 6. We get Hom∼(Φ̂∼, Ψ̂) = Hom∼(Φ̂, Ψ̂∼) =

{(h, h′)∼|(h, h′)∼ ∈ Hom∼(Φ,Ψ) and h′ ∈ Ωn}.

Theorem 7. a) (h, h′)∼ ∈ Hom∼(Φ̂∼, Ψ̂), (g, g′)∼ ∈ Hom∼(Ψ̂, Γ̂∼) =⇒
(g ◦ h, g′ ◦ h′) ∈ Hom(Φ̂∼, Γ̂∼), b) (h, h′)∼ ∈ Hom∼(Φ̂, Ψ̂∼), (g, g′)∼ ∈

Hom∼(Ψ̂∼, Γ̂) =⇒ (g ◦h, g′ ◦h′) ∈ Hom(Φ̂, Γ̂), c) (h, h′) ∈ Hom(Φ̂, Ψ̂),

(g, g′)∼ ∈ Hom∼(Ψ̂, Γ̂∼) =⇒ (g ◦ h, g′ ◦ h′)∼ ∈ Hom∼(Φ̂, Γ̂∼), d)
(h, h′) ∈ Hom(Φ̂∼, Ψ̂∼), (g, g′)∼ ∈ Hom(Ψ̂∼, Γ̂) =⇒ (g ◦ h, g′ ◦ h′)∼ ∈

Hom∼(Φ̂∼, Γ̂), e) (h, h′)∼ ∈ Hom∼(Φ̂∼, Ψ̂), (g, g′) ∈ Hom(Ψ̂, Γ̂) =⇒
(g ◦ h, g′ ◦ h′)∼ ∈ Hom∼(Φ̂∼, Γ̂), f) (h, h′)∼ ∈ Hom∼(Φ̂, Ψ̂∼), (g, g′) ∈
Hom(Ψ̂∼, Γ̂∼) =⇒ (g ◦ h, g′ ◦ h′)∼ ∈ Hom∼(Φ̂, Γ̂∼) hold.

Definition 4. In a), b) the morphism (g ◦ h, g′ ◦ h′) is by definition
the composition of the antimorphisms (g, g′)∼ and (h, h′)∼ and its
notation is (g, g′)∼ ◦ (h, h′)∼. In c), d) the antimorphism (g ◦h, g′ ◦h′)∼

is by definition the composition of the antimorphism (g, g′)∼ with the
morphism (h, h′) and it has the notation (g, g′)∼ ◦ (h, h′). Similarly for
(g ◦ h, g′ ◦ h′)∼ denoted (g, g′) ◦ (h, h′)∼ from e), f).

Theorem 8. Let the functions Φ,Ψ : Bn −→ Bn and the antimor-
phisms (h, h′)∼ ∈ Hom(Φ̂∼, Ψ̂), (g, g′)∼ ∈ Hom(Φ̂, Ψ̂∼); ∀µ ∈ Bn,∀α ∈

Π̂n, we have ∀ν ∈ Ôr
∼α

Φ (µ), h(µ) ∈ Ôr
ĥ′(α)

Ψ (h(ν)),∀ν ∈ Ôr
α

Φ(µ), g(µ) ∈
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Ôr
∼ĥ′(α)

Ψ (g(ν)),∀ν ∈ ω̂∼α
Φ (µ), h(µ) ∈ ω̂

ĥ′(α)
Ψ (h(ν)),∀ν ∈ ω̂α

Φ(µ), g(µ) ∈

ω̂
∼ĥ′(α)
Ψ (g(ν)).

Theorem 9. Let µ ∈ Bn with Φ(µ) = µ. If (h, h′)∼ ∈ Hom∼(Φ̂∼, Ψ̂),

then Ψ(h(µ)) = h(µ) and ∀α ∈ Π̂n,∀k ∈ N , Ψ̂ĥ′(α)(h(µ), k) = h(µ)
hold; if (h, h′)∼ ∈ Hom∼(Φ̂, Ψ̂∼), then Ψ(h(µ)) = h(µ) and ∀α ∈

Π̂n,∀k ∈ N , Ψ̂∼ĥ′(α)(h(µ), k) = h(µ) are true.

Remark 1. The next sets Hom(Φ̂∼, Ψ̂),Hom(Φ̂, Ψ̂∼), Hom∼(Φ̂, Ψ̂),
Hom∼(Φ̂∼, Ψ̂∼) are defined like in Definition 1 and Definition 3.
We can prove that Hom(Φ̂∼, Ψ̂) = Hom(Φ̂, Ψ̂∼),Hom(Φ̂∼, Ψ̂) ⊂

Hom(Φ,Ψ),Hom(Φ̂∼, Ψ̂) ⊂ Hom(Φ̂, Ψ̂),Hom∼(Φ̂, Ψ̂) =
Hom∼(Φ̂∼, Ψ̂∼),Hom∼(Φ̂, Ψ̂) ⊂ Hom∼(Φ,Ψ),Hom∼(Φ̂, Ψ̂) ⊂
Hom∼(Φ̂∼, Ψ̂). These morphisms and antimorphisms are not indu-
ced by morphisms (h, h′) ∈ Hom(Φ,Ψ) and antimorphisms (h, h′)∼ ∈

Hom∼(Φ,Ψ), i.e. theorems like 1 and 6 are false.

At the same time we notice, as a conclusion, in which manner the
morphisms and the antimorphisms keep the orbits, the omega limit
sets, periodicity and the fixed points.
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A class of nonlocal semilinear delay evolutions

Ioan I. Vrabie

Abstract

We state an existence result referring to a class of semilinear
delay evolution equations subjected to nonlocal initial conditions.

Keywords: linear semigroups, compact perturbations, non-
local conditions, damped wave equation.

1 Introduction

Let X be a real Banach space, let A : D(A) ⊆ X → X be the in-
finitesimal generator of a C0-semigroup of contractions, let τ ≥ 0,
f : [ 0, T ] × C([−τ, 0 ];X) → X a continuous and compact function
having sublinear growth and let H : C([−τ, T ];X) → C([−τ, 0 ];X)
be a nonexpansive mapping. For u ∈ C([−τ, T ];X) and t ∈ [ 0, T ], we
denote ut by ut(s) = u(t+ s) for each s ∈ [−τ, 0 ].

We consider the nonlocal delay differential evolution
{

u′(t) = Au(t) + f(t, ut) + g(t, ut), t ∈ [ 0, T ],

u(t) = H(u)(t), t ∈ [−τ, 0 ].
(1)

Using some metrical combined with topological fixed-point argu-
ments, we can prove that, if f is continuous and compact, g is jointly
continuous and Lipschitz with respect to its second variable and the
mapping H : C([−τ, T ];X) → C([−τ, 0 ];X) is nonexpansive in a cer-
tain sense to be made precise in due course, the problem (1) has at least
one mild solution. This new theorem, inspired by those established in
[3], will be proved in detail in [4] and has applications in the study of
some important classes of second order hyperbolic problems subjected
to nonlocal initial conditions, and not only.

c©2017 by Ioan I. Vrabie
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2 The main result

Let ω > 0. We recall that a linear operator A : D(A) ⊆ X → X is said
to be the infinitesimal generator of a C0-semigroup of type (1,−ω) if it
generates a C0-semigroup, {S(t) : D(A) → D(A); t ∈ R+}, satisfying

‖S(t)x‖ ≤ e−ωt‖x‖

for each t ∈ R+ and x ∈ X. For details on delay evolutions subjected
to nonlocal initial conditions and C0-semigroups, see [1] and [2].

The main result of the paper is:

Theorem 2.1. Let A : D(A) ⊆ X → X be the infinitesimal generator

of a C0-semigroup of type (1,−ω), {S(t) : D(A) → D(A); t ∈ R+}.

Let us assume that f : [ 0, T ] × C([−τ, 0 ];X) → X is continuous and

compact and there exist k ∈ R+ and m ∈ R+ such that

‖f(t, v)‖ ≤ k‖v‖C([−τ,0 ];X) +m

for all (t, v) ∈ [ 0, T ]×C([−τ, 0 ];X), let g : [ 0, T ]×C([−τ, 0 ];X) → X
be continuous on [ 0, T ] × C([−τ, 0 ];X) and Lipschitz with respect to

its last argument whose Lipschitz constant ℓ satisfies

k + ℓ < ω.

There exists a ∈ (0, T ) such that H : C([−τ, T ];X) → C([−τ, 0 ];X)
satisfies

‖H(u)−H(v)‖C([−τ,0 ];X) ≤ ‖u− v‖C([ a,T ];X)

for each u, v ∈ C([−τ, T ];X). Then the nonlocal problem (1) has at

least one mild solution.

3 A damped wave equation with delay

Let Ω be a nonempty bounded and open subset in R
d, d ≥ 1, with C1

boundary Σ, let Q+ = R+ × Ω, let τ ≥ 0, ω > 0, Qτ = [−τ, 0 ] × Ω,
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Σ+ = R+ × Σ and let us consider the non-local initial-value problem
for the damped wave equation with delay:






∂2u

∂t2
=Lu+h1

(

t,

∫ 0

−τ

u(t+ s, x) ds

)

+h2

(

t,

(
∂u

∂t

)

t

)

in Q+,

u(t, x) = 0, on Σ+,

u(t, x)= [H1(u)(t)](x),
∂u

∂t
(t, x)=

[

H2

(
∂u

∂t

)

(t)

]

(x), in Qτ ,

(2)

where [Lu](t, x) :=

d∑

i=1

∂2u

∂x2i
(t, x)− 2ω

∂u

∂t
(t, x)− ω2u(t, x).

Theorem 3.1. Let us assume that there exist k ∈ R+, m ∈ R+, γ ∈ R+

and a ∈ (0, T ] such that the functions h1, h2, H1 and H2 satisfy :

(i) h1 : [ 0, T ]× R → R is continuous, and

|h1(t, y)| ≤ k|y|+m

for all (t, y) ∈ [ 0, T ]× R.

(ii) h2 : [ 0, T ]× C([−τ, 0 ];L2(Ω)) → L2(Ω) is continuous, and

‖h2(t, y)− h2(t, z)‖L2(Ω) ≤ γ‖y − z‖C([−τ,0 ];L2(Ω))

for all (t, y), (t, z) ∈ [ 0, T ]× C([−τ, 0 ];L2(Ω)).

(iii) H1 : C([ a, T ];H1
0 (Ω)) → C([−τ, 0 ];H1

0 (Ω)), and

‖H1(u)−H1(ũ)‖C([−τ,0 ];H1

0
(Ω)) ≤ ‖u− ũ‖C([ a,T ];H1

0
(Ω))

for all u, ũ ∈ C([−τ, 0 ];H1
0 (Ω)).

(iv) H2 : C([ a, T ];L2
0(Ω)) → C([−τ, 0 ];L2(Ω)), and

‖H2(v)−H2(ṽ)‖C([−τ,0 ];L2(Ω)) ≤ ‖u− v‖C([ a,T ];L2(Ω))

for all v, ṽ ∈ C([−τ, 0 ];L2(Ω)).
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(v) With λ1 the first eigenvalue of −∆, we have k+γ(1+ωλ−1
1 ) < ω.

Then, there exists at least one mild solution, u, of the problem (2),

satisfying u ∈ C([−τ, T ];H1
0 (Ω)), and

∂u

∂t
∈ C([−τ, T ]);L2(Ω)).

Setting H1(u)(t)(x) = u(t+ T, x), H2

(
∂u

∂t

)

(t)(x) =
∂u

∂t
(t+ T, x),

and assuming that h1 and h2 are defined on R+ with respect to t,
and that both are T -periodic in t, from Theorem 3.1, we deduce an
existence result for T -periodic solutions to (2).
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Classification of quadratic systems possessing

an invariant conic and a Darboux invariant

Nicolae Vulpe, Dana Schlomiuk

Abstract

In this article we consider the family of quadratic differential
systems having an invariant conic C : f(x, y) = 0, and a Darboux
invariant of the form f(x, y)est with s ∈ R \ {0} (where t is the
time). Applying the algebraic theory of invariants of differen-
tial equations we present a complete classification of this family
of quadratic systems. First we detect necessary and sufficient
conditions for an arbitrary quadratic system to be in this class.
Secondly, we construct affine invariant criteria for the realization
of each one of the possible phase portraits of the systems in this
family.

Keywords: quadratic differential system, invariant conic,
Darboux invariant, phase portrait, group action, affine invariant
polynomial.

1 Introduction

We consider the family of real quadratic differential systems

ẋ = p0 + p1(ã, x, y) + p2(ã, x, y) ≡ p(ã, x, y),

ẏ = q0 + q1(ã, x, y) + q2(ã, x, y) ≡ p(ã, x, y)
(1)

with max(deg(p),deg(q)) = 2 and

p0 = a, p1(ã, x, y) = cx+ dy, p2(ã, x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(ã, x, y) = ex+ fy, q2(ã, x, y) = lx2 + 2mxy + ny2.

c©2017 by Nicolae Vulpe, Dana Schlomiuk
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Here we denote by ã = (a, c, d, g, h, k, b, e, f, l,m, n) the 12-tuple of the
coefficients of systems (1).

In [3] the family of systems (1) possessing an invariant conic and a
Darboux invariant is considered.

Let Ω be an open and dense subset of R
2. According to [3] an

invariant of systems (1) in Ω is a nonconstant C1 function I in the
variables x, y and t such that I(x(t), y(t), t) is constant on all solution
curves (x(t), y(t)) of system (1) contained in Ω, i.e. ∂I

∂x
p+ ∂I

∂y
q+ ∂I

∂t
= 0,

for all (x, y) ∈ Ω.
For f ∈ C[x, y] we say that the curve f(x, y) = 0 is an invariant

algebraic curve of system (1) if there exists K ∈ C[x, y] such that
P ∂f

∂x
+Q∂f

∂y
= Kf.

In paper [3, Subsection 2.2] it is given the definition of a Darboux
invariant of the family of polynomials differential systems. We consider
here a particular case of a Darboux invariant, namely an invariant of
the form I(x, y, t) = f(x, y)λest with λ, s ∈ R, s 6= 0, where f(x, y) = 0
is an invariant algebraic curve.

According to [3] the following statements hold:

Lemma [3, Theorems 2 and 8].
(i) The only planar quadratic systems which admit a non-degenerate

invariant conic C : f(x, y) = 0 and a Darboux invariant of the form

f(x, y)λest with λ, s ∈ R and s 6= 0 are those for which C is a parabola.

(ii) Quadratic systems having the invariant parabola y = x2 and a

Darboux invariant of the form (y− x2)λest with λ, s ∈ R and s 6= 0 via

an affine transformation can be brought to the form

ẋ = px+ qy + r, ẏ = c(y − x2) + 2x(px+ qy + r)

where c, p, q and r are real parameters. Moreover its Darboux invariant

is I(x, y, t) = (y − x2)e−ct.

2 Main results

In the next theorem we use the invariant polynomials µi

(i = 0, 1, . . . , 4), M̃ , η, K̃, R̃, D, K1 and K3 which were constructed
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earlier and could be found, for example, in [1] and [2]). We also use
the invariant polynomials V1, V2 and V3 constructed here as follows:

V1=A17−A18, V2=
∂C2

∂x
∂C1

∂y
−∂C2

∂y
∂C1

∂x
, V3=4∂C2

∂x
∂C0

∂y
−4∂C2

∂y
∂C0

∂x
−3C1D1,

where A17 and A18 are the affine invariants given in [1] and

Ci = ypi − xqi, (i = 0, 1, 2), D1 =
∂
∂x
p1 +

∂
∂y
q1.

Taking into consideration the statements of the above lemma we
prove the following theorem:
Main Theorem. (A) A non-degenerate quadratic differential system

in the class QS (i.e.
∑

4

i=0
µ2

i 6= 0) possesses an irreducible invariant

conic f(x, y) = 0 and a Darboux invariant of the form f(x, y)λest with
λ, s ∈ R and s 6= 0 if and only if η = K̃ = R̃ = 0 and one of the

following sets of conditions holds:

(i) M̃µ2 6=0, V1=0; (ii) M̃ =µ2=0,K3 6=0 and (V2 6=0)∨(V2=V3=0).

Moreover this system has an one-parameter family of invariant para-

bolas if an only if M = µ2 = V2 = V3 = 0, whereas in all other cases

the invariant parabola is unique.

(B) Assume that a non-degenerate system in QS possesses an in-

variant conic (which is parabola) and a Darboux invariant, i.e. the

conditions provided by the statement (A) are satisfied. Then the phase

portrait of this system corresponds to one of the given in Figure 1 if and

only if the corresponding additional conditions are satisfied as follows:

Port.1 ⇔ M̃ 6= 0, D < 0; Port.2 ⇔ M̃ 6= 0, D > 0;

Port.3 ⇔ M̃ 6= 0, D = 0; Port.4 ⇔ M̃ = 0, µ3K1 < 0;

Port.5 ⇔ M̃ = 0, µ3K1 > 0, K3 < 0;

Port.6 ⇔ M̃ = 0, µ3K1 > 0, K3 = 0;

Port.7 ⇔ M̃ = 0, µ3K1 = 0.
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Figure 1. The phase portraits
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Absolute Matrix Summability Factors of

Involving quasi-f-power Increasing Sequence

Şebnem Yildiz

Abstract

In this work, a new theorem dealing with absolute Riesz sum-
mability factors of infinite series has been proved by taking nor-
mal matrix and using quasi-f-power increasing sequence.
Keywords: Riesz mean, absolute matrix summability, summa-
bility factors, infinite series, Hölder inequality, Minkowski ine-
quality.

1 Introduction

A positive sequence (bn) is said to be almost increasing if there ex-
ists a positive increasing sequence (bn) and two positive constants
A and B such that Abn ≤ an ≤ Bbn (see [1]). A sequence
(λn) is said to be of bounded variation, denoted by (λn) ∈ BV, if∑

∞

n=1
|∆λn|=

∑
∞

n=1
|λn–λn+1| < ∞. A positive sequence X = Xn is

said to be a quasi-f-power increasing sequence if there exists a constant
K = K(X, f) ≥ 1 such that KfnXn ≥ fmXm for all n ≥ m ≥ 1, where
f = (fn) =

{
nδ(logn)σ , σ ≥ 0, 0 < δ < 1

}
(see [7]). Let (pn) be a se-

quence of positive number such that Pn =
∑

∞

v=0
pv → ∞ as n →

∞, (P−i = p−i = 0, i ≥ 1). The sequence-to-sequence transforma-
tion tn = 1

Pn

∑n
v=0

pvsv defines the sequence (tn) of the Riesz mean or

simply the
(
N̄ , pn

)
mean of the sequence (sn). The series

∑
an is said

to be summable |N̄ , pn|k, k ≥ 1, if (see [2])

∞∑

n=1

(
Pn

pn

)k−1

|tn − tn−1|
k < ∞. (1)
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Let A = (anv) be a normal matrix, i.e., a lower triangular matrix
of nonzero diagonal entries. Then A defines the sequence-to-sequence
transformation, mapping the sequence s = (sn) to As = (An(s)), where
An(s) =

∑n
v=0

anvsv, n = 0, 1, ... The series
∑

an is said to be sum-
mable |A, θn|k, k ≥ 1, if (see [7])

∞∑

n=1

θk−1

n

∣
∣∆̄An(s)

∣
∣k < ∞, (2)

where (θn) is any sequence of positive constants and ∆̄An(s) = An(s)−
An−1(s).

2 The Known Result

Bor has obtained the following result concerning |N̄ , pn|k summability
factors of infinite series in the following form.
Theorem 1.[3] Let (λn) ∈ BV, and let (Xn) be a quasi-f-power incre-
asing sequence for some δ (0 < δ < 1) and σ ≥ 0. Let (βn) and (λn)
be sequences such that

|∆λn| ≤ βn, (3)

βn → 0 as n → ∞, (4)
∞∑

n=1

n|∆βn|Xn < ∞, (5)

|λn|Xn = O(1), (6)

and let (pn) be a sequence such that

Pn = O(npn), (7)

Pn∆pn = O(pnpn+1). (8)

If
n∑

v=1

|tv|
k

v
= O(Xn) as n → ∞, (9)

then the series
∑

∞

n=1
an

Pnλn

npn
is summable |N̄ , pn|k, k ≥ 1.
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3 The Main Result

The aim of this paper is to generalize Theorem 1 for |A, θn|k summa-
bility method.
Theorem 2. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (10)

an−1,v ≥ anv, for n ≥ v + 1, (11)

ann = O(
pn
Pn

), (12)

ân,v+1 = O(v|∆̄anv|). (13)

Let (λn) ∈ BV, and let (Xn) be a quasi-f-power increasing sequence for
some δ (0 < δ < 1) and σ ≥ 0. If the conditions (3)-(8) of Theorem 1
are satisfied and (θnann) is a non-increasing sequence satisfying

n∑

v=1

(θvavv)
k−1

|tv|
k

v
= O(Xn), as n → ∞. (14)

then the series
∑

∞

n=1
an

Pnλn

npn
is summable |A, θn|k, k ≥ 1.

Lemma 1[5] Under the conditions on (Xn), (βn), and (λn) as expressed
in the statement of Theorem 1, we have the following:

nXnβn = O(1), (15)
∞∑

n=1

βnXn < ∞. (16)

Lemma 2 [4] If the conditions (7)-(8) of Theorem 1 are satisfied, then

∆
(

Pn

n2pn

)
= O

(
1

n2

)
.

4 Conclusion

If we take A as the matrix of weighted mean with θn = Pn

pn
in Theorem

2, we have Theorem 1 dealing with |N̄ , pn|k summability factors of
infinite series.
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A New Generalization on the Absolute Riesz

Summability

Şebnem Yildiz

Abstract

In this work, a new theorem dealing with absolute Riesz sum-
mability factors of infinite series has been proved by using quasi
increasing sequence.
Keywords: Riesz mean, absolute matrix summability, summa-
bility factors, infinite series, Hölder inequality, Minkowski ine-
quality.

1 Introduction

A positive sequence (an) is said to be almost increasing if there exists
a positive increasing sequence (bn) and two positive constants A and
B such that Abn ≤ an ≤ Bbn (see [1]). A sequence (an) is almost
increasing if and only if it is quasi increasing, that is if there exists a
constant K = K(an) ≥ 1 such that Kan ≥ am ≥ 0 holds for all n ≥ m.
Let (pn) be a sequence of positive number such that Pn =

∑
∞

v=0
pv →

∞ as n → ∞, (P−i = p−i = 0, i ≥ 1). The sequence-to-sequence
transformation tn = 1

Pn

∑n
v=0

pvsv defines the sequence (tn) of the Riesz

mean or simply the
(
N̄ , pn

)
mean of the sequence (sn). The series

∑
an

is said to be summable |N̄ , pn|k, k ≥ 1, if (see [2])

∞∑

n=1

(
Pn

pn

)k−1

|tn − tn−1|
k < ∞. (1)

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix
of nonzero diagonal entries. Then A defines the sequence-to-sequence

c©2017 by Şebnem Yildiz
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transformation, mapping the sequence s = (sn) to As = (An(s)), where
An(s) =

∑n
v=0

anvsv, n = 0, 1, ... The series
∑

an is said to be sum-
mable |A, θn|k, k ≥ 1, if (see [3])

∞∑

n=1

θk−1

n

∣
∣∆̄An(s)

∣
∣k < ∞, (2)

where (θn) is any sequence of positive constants and

∆̄An(s) = An(s)−An−1(s). (3)

2 The Known Result

Sulaiman has obtained the following result concerning |N̄ , pn|k sum-
mability factors of infinite series in the following form.
Theorem 1.[4] Let (λn) → 0. Suppose there exists a positive quasi
increasing sequence (Xn) such that

∞∑

n=1

1

n
Xn|λn| < ∞, (4)

m∑

n=1

1

n

|tn|
k

Xk−1
n

= O(Xm) as m → ∞, (5)

m∑

n=1

pn
Pn

|tn|
k

Xk−1
n

= O(Xm) as m → ∞, (6)

∞∑

n=1

Xn|∆λn| < ∞, (7)

∞∑

n=1

nXn|∆|∆λn|| < ∞, (8)

then the series
∑

anλn is summable |N̄ , pn|k, k ≥ 1.
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3 The Main Result

The aim of this paper is to generalize Theorem 1 for |A, θn|k summa-
bility method.
Theorem 2. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (9)

an−1,v ≥ anv, for n ≥ v + 1. (10)

ann = O(
pn
Pn

) (11)

and let (θnann) be a non-increasing sequence. If (Xn) satisfy the con-
ditions (4)-(5) and (7)-(8) of Theorem 1 and the following conditions
holds by (θn)

∞∑

n=v+1

θk−1

n âknv < ∞, (12)

m∑

n=1

(θnann)
k−1ann

|tn|
k

Xk−1
n

= O(Xm), as m → ∞ (13)

then the series
∑

anλn is summable |A, θn|k, k ≥ 1.
Lemma 1.[4] Let (Xn) be a positive quasi increasing sequence and let
λn → 0. If the conditions (7)-(8) of Theorem 1 are satisfied, then

Xn|λn| < ∞, (14)

nXn|∆λn| < ∞. (15)

4 Conclusion

If we take A as the matrix of weighted mean with θn = Pn

pn
in Theorem

2, we have Theorem 1 dealing with |N̄ , pn|k summability factors of in-
finite series.
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Systems of differential equations 

approximating the Lorenz system 

Biljana Zlatanovska, Donco Dimovski 

Abstract 

By using modified Lorenz system from [1] as the system of 

differential equations of seventh order which approximated the 

Lorenz system, we obtained four new systems of differential 

equations of third, fourth, fifth and sixth order. Every new system 

of differential equations is obtained using  the solutions of the third 

differential equation from the modified Lorenz system. The third 

differential equation of modified Lorenz system is homogeneous 

linear differential equation of fifth order with constant coefficients 

which can be solved. By computer simulations we compare the 

local behavior  of modified systems of differential equations with 

the global behavior of the Lorenz system.  

Keywords: Lorenz system, system of differential equations, 

modified Lorenz system, computer simulations. 

1 Introduction 

In [2] and [3] we have used power series combined with difference 

equations to find local approximations to the solutions of the Lorenz 

system of differential equations: 

bzxyz

yzrxy

xyx













)(

)(

 (1) 

with parameters σ, r and b. For initial values a0=x(0), b0=y(0), c0=z(0). We 

assume  that the solutions x(t), y(t), z(t) of the system (1) are expanded as 

Maclaurin series with the coefficients an, bn, cn. 

By [2], [3] and [1] after mathematical transformations with the 

initial values a0=x(0), b0=y(0), c0=z(0), 
( )

(0)
p

pc z , }4,3,2,1{p and for 

A=1+σ+b, B=σ(r-c0)-a0
2
, C=σa0b0, D= -σ

2
b0

2
, it was obtained modified
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Lorenz system ([1]), 

DbzzCbDzBbCzAbBzbAz

yzrxy

xyx













)()()()(

)(

)(

)2()3()4()5(



(2) 

2 Systems of differential equations 

The third equation of the system (2) is homogenous linear differential 

equation of fifth order with constant coefficients and its characteristic 

equation has solutions λ1= -b, λ2/3/4/5=λ(A,B,C,D,b). Let, we suppose that 

all solutions of characteristic equation λi, i=1,2,3,4,5 are real solutions.  

 For the solutions λ1/2/3/4/5 the system (2) of seventh order can be 

transformed in the following systems of differential equations (SDE): 

0

)(

)(

1 





zz

yzrxy

xyx










         (3)                 

0)(

)(

)(

2121

)2(







zzz

yzrxy

xyx










      (4)

0)()(

)(

)(

321323121

)2(

321

)3(







zzzz

yzrxy

xyx










(5) 

0)(

)(

)(

)(

)(

4321432431421321

)2(

434232413121

)3(

4321

)4(











zz

z

zz

yzrxy

xyx















(6) 

with the initial values a0=x(0),b0=y(0),c0=z(0), 1(0) ,z c
(2)

2(0) ,cz   
(3)

3(0) .cz   

3 Computer simulations for the SDE 

In this section, we will look via computer simulations the local behavior 

for the SDE (2), (3), (4), (5), (6) and we will compare with global 
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behavior of the Lorenz system,(fig.1). For given parameters σ, r, b, the 

procedure for looking at the local behavior of the SDE is the same as in 

[4], fig.2.  

Example: For the parameters σ=2, r=31, b=1 and the initial values 

a0=-3, b0=1, c0=-5 and λ1=-1, λ2≈-0.301, λ3≈-10.147, λ4≈0.210. 

Figure 1: Results obtained by Mathematica for the Lorenz system (1) of time 

interval [0,7] 

a) the systems (3) and (4) of time intervals [0,2] and [0,7] respectively

b) the systems (5) and (6) of time interval [0,7]
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c) the system (2) of time interval [0,7]

Figure 2: The solutions xT(t), yT(t), zT(t) for the systems (2), (3), (4), (5) and (6) 

with time step T=0.05 

4 Conclusion 

The local behavior of the system (2) is closest to the behavior of the 

Lorenz system for a small time step.  
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Maximum nontrivial convex cover of a tree

Radu Buzatu

Abstract

The nontrivial convex p-cover problem of a tree is studied.
We propose the recursive formula that determines the maximum
nontrivial convex cover number of a tree.

Keywords: convexity, nontrivial convex cover, tree.

1 Introduction

A vertex set S of a graph G is called convex if all vertices of every
shortest path between two of its vertices are in S [1]. Generally, the
concept of convex p-cover of a graph is introduced in [2] and is examined
in [2, 3]. We defined a nontrivial convex p-cover of a graph as a special
case of general convex p-cover in [3]. A family of sets Pp(G) is called a
nontrivial convex p-cover of a graph G if the following conditions hold:

1) every set of Pp(G) is convex in G;
2) every set S of Pp(G) satisfies inequalities: 3 ≤ |S| ≤ |X(G)| − 1;
3) X(G) =

⋃
Y ∈Pp(G) Y ;

4) Y 6⊆
⋃

Z∈Pp(G)
Z 6=Y

Z for every Y ∈ Pp(G);

5) |Pp(G)| = p.

Particularly, we showed that it is NP-complete to decide whether a
graph has a nontrivial convex p-cover for a fixed p ≥ 2 [3]. Nontrivial
convex p-covers for some classes of graphs are studied in [7, 8]. The
most consistent results are obtained for trees [4, 5, 6]. In the present
paper we continue our research on nontrivial convex p-cover problem
of a tree.

c©2017 by Radu Buzatu
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2 Main Results

Recall that a vertex x ∈ X(G) is called resident in Pp(G) if x belongs
to only one set of Pp(G) [3]. The greatest p ≥ 2 for which a graph G
has a nontrivial convex p-cover is said to be the maximum nontrivial

convex cover number ϕmax
cn (G) [4].

Let T be a tree on n vertices and let C(T ) be a set of terminal
vertices of T , p = |C(T )|. An important result is given by the following
lemma.

Lemma 1. If n ≥ 4, then there exists a maximum nontrivial convex

cover Pϕmax
cn

(T ) such that every set S ∈ Pϕmax
cn

(T ) contains a path

L = [x, y, z], where x is a resident vertex in Pϕmax
cn

(T ).

Suppose that diam(T ) ≥ 4, then we define the set:

N(T ) = X(T )\



C(T ) ∪
⋃

y∈C(T )

Γ(y)



 .

The set N(T ) is empty if and only if every nonterminal vertex of
T is adjacent to at least one terminal vertex of T , but in this case,
according to [4], we get ϕmax

cn (T ) = p. Let x be a vertex of N(T ).
Since x is an articulation vertex, through the elimination of x from T
we obtain |Γ(x)| connected components T y

x , y ∈ Γ(x). For every vertex
y ∈ Γ(x) we get the family of subtrees:

V
y
x(T ) =

∗T y
x ∪

⋃

z∈Γ(x)\y

T z
x ,

where ∗T y
x is a subtree of T obtained by adding x to T y

x such that x is
adjacent to y.

Finally, we get the family of subfamilies of subtrees:

Vx(T ) =
⋃

y∈Γ(x)

V
y
x(T ).
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For the sake of estimation of the number ϕmax
cn (T ), we consider

that if 0 ≤ n ≤ 2, then ϕmax
cn (T ) = 0, and if n = 3, then ϕmax

cn (T ) = 1.
Combining Lemma 1 with results from [4, 5, 6], we obtain the recursive
formula, reflected in Theorems 1 and 2, that determines the maximum
nontrivial convex cover number ϕmax

cn (T ).

Theorem 1. If diam(T ) ≤ 5 or diam(T ) ≥ 6 and N(T ) = ∅, then

the following relation holds:

ϕmax
cn (T ) =






p, if 3 ≤ diam(T ) ≤ 5 or

diam(T ) ≥ 6 and N(T ) = ∅;

p-1, if diam(T ) = 2;

0, if 0 ≤ diam(T ) ≤ 1.

Theorem 2. If diam(T ) ≥ 6 and N(T ) 6= ∅, then the following

relation holds:

ϕmax
cn (T ) = max





p,maxx∈N(T )





maxy∈Γ(x)






∑

H∈V
y

x
(T )

ϕmax
cn (H)















.

3 Conclusion

In this paper we propose the recursive formula that establishes the
maximum nontrivial convex cover number of a tree, based on which
an efficient algorithm that determines whether a tree has a nontrivial
convex p-cover for a fixed p ≥ 2 can be developed. Taking into account
our previous results [4, 5, 6] together with these new findings we arrive
to the conclusion that the nontrivial convex p-cover problem of a tree
is almost completely solved.
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Algorithm for the localization of singularities of

functions defined on closed contours

Maria Capcelea, Titu Capcelea

Abstract

A numerical algorithm for locating polar singularities of
functions defined on a discrete set of points of a simple closed
contour in the complex plane is examined. The algorithm uses
the Faber-Padé approximation of the function and the fact that
the zeros of its denominator give us approximations of the poles
of function. The numerical performance of the algorithm is being
analyzed on test issues.

Keywords: Padé algorithm, singular points, closed contour.

1 Problem Formulation

Methods for solving differential and integral equations whose solutions
are meromorphic functions usually start from the premise that locations
of the singularities of functions are known. In this paper we examine
the following problem of locating singularities (discontinuity points and
poles, not the essential singularities) of functions defined on contours
in complex plane.

Let Ω+ ⊂ C be a simply connected domain bounded by a piecewise
smooth closed curve Γ. We consider that the point z = 0 ∈ Ω+.
By the Riemann mapping theorem there exists a conformal map z =
ψ (w) of D− := {w ∈ C | |w| > 1} onto Ω− := C\ {Ω+ ∪ Γ} such that
ψ (∞) = ∞, ψ′ (∞) > 0. The function ψ (w) transforms the circle
Γ0 := {w ∈ C | |w| = 1} onto Γ.

c©2017 by Maria Capcelea, Titu Capcelea
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Let f (z) be a meromorphic function in the finite domain Ω ⊃ Ω+∪

Γ that is analytic in Ω+ (we will denote this fact by f ∈ H (Ω+)).
Considering that the function f (z) is defined by a finite set of values
fk = f (zk) in the points {zk}, zk = ψ (wk) ∈ Γ, wk ∈ Γ0, we aim to
find the singularities of f on Γ.

2 The theory underlying the algorithm

According to the theory of analytic continuation of functions of a com-
plex variable, the properties of a function analytic at a point are contai-
ned in its Taylor series expansion at that point. We know that the Padé
approximants perform an analytic continuation of the series outside its
domain of convergence and can be used effectively in determining in-
formation about the singularity structure of a function from its Taylor
series coefficients [1].

The problem of recovering the meromorphic function F in the disk
Dm (F ), where F has m poles taking into account their multiplicities,
is solved on the basis of the theorem of de Montessus de Ballore [1].
According to Montessus’s theorem, the poles of the sequence of Padé
approximants to the function F converge to the poles of F on Dm (F ).

In the formulated problem in order to apply the classical result of
Montessus’s theorem we used the properties of the Faber transform
[2,3] and of the conformal map z = ψ (w). Since the function f is
analytic on simply connected domain Ω+ with boundary Γ, the Faber
series expansion [2,3] is used to represent the function f instead of the
Taylor series that is defined on the disk.

The Faber transform T associates to F ∈ H (D+) the Faber series
expansion of the function f ∈ H (Ω+), f (z) =

∑
∞

k=0 ckFk (z) , z ∈

Ω+, where Fk (z) is the Faber polynomial of degree k [2,3]. The
coefficients of the expansion are defined by the formula ck = 1

2πi∫
Γ0
f (ψ (w))w−(k+1)dw. For f ∈ H (Ω+) there exists an F ∈ H (D+)

such that f = T (F ).

An important property of the Faber operator is that it induces
a bijective correspondence between the set of rational functions with
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poles on D−∪Γ0 and the set of rational functions with poles on Ω−∪Γ.
Moreover, this transformation keeps intact the number of poles and
their multiplicities [3]. The poles of T (R) are obtained as images under
the Riemann function ψ of the poles of rational function R [3].

Based on the Montessus’s theorem [1] it can be shown for the me-
romorphic function f withM poles on Ω−∪Γ that for sufficiently large
N , the Padé approximants r(N,M) to f have M poles. As N → ∞ the
sequence r(N,M) converges to f uniformly inside the domain Ω′ obtai-
ned from Ω by deleting the poles of f and the poles of the sequence
r(N,M) tend to the poles of f . Each pole of f attracts a number of poles
of r(N,M) equal to its multiplicity.

3 An algorithm for the localization of singular

points on Γ

For the classical Padé approximant R(N,M) (w) to the function F (w) we
determine the poles that belong to Γ0. Next, by using the properties
of the Faber transform, the singular points on Γ of the Faber-Padé
approximation are located. We perform the following steps:

1. We compute the coefficients qj, j = 1, ...,M of the polynomial
QM (w) from the Padé approximation R(N,M) (w) = PN (w) /QM (w)

to F (w). If we have PN (w) =
∑N

k=0 pkw
k , QM (w) =

∑M
j=0 qjw

j , q0 =
1, then the coefficients qj, j = 1, ...,M are determined as a solution of
the system of linear equations (abbreviated SLE):

M∑

j=1

ck−jqj = −ck, k = N + 1, ..., N +M,

where cj are the Faber coefficients that coincide with the Taylor coef-
ficients for the function F (w) =

∑
∞

j=0 cjw
j .

Taking into account that the function f is defined by its values on
the boundary Γ, we will compute approximations to cj based on m -
point trapezoidal rule for the contour integral. To avoid the situation
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when the singularities of f on Γ affect the accuracy of the approxi-
mation, we will approximate the integral on Γ0 that defines ck by the
integral on the perturbed circle Γρ

0 := {w ∈ C | |w| = ρ}. Here we have
ρ = 1− ε > 0 and ε > 0 is given arbitrarily small positive number, for
example, ε = 0.01. If θk ∈ [0, 2π] , k = 0, 1, ...,m are the polar angles
corresponding to the points zk, k = 0, 1, ...,m on Γ, then according to
m - point trapezoidal rule we have

cj ≈ c̃
(m)
j :=

1

4πρj

m∑

k=1

(θk − θk−1)
(
fk−1e

−ijθk−1 + fke
−ijθk

)
,

where the values fk = f
(
ψ
(
ρeiθk

))
, k = 0, ...,m−1 are initially given.

2. We find the zeros of the polynomial QM (w) =
∑M

j=0 qjw
j , w ∈

Γ0, where qj, j = 1, ...,M is the solution of SLE. Next we find the
zeros of the polynomial qM (z) , z ∈ Γ, as images under ψ of the zeros
of QM (w). The obtained values are the candidates for the desired
singularities.

The numerical performance of the algorithm is analyzed. Also, we
discuss how to eliminate the spurious poles of the Padé approximants.
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d
m-convex functions in the complex of multi-ary

relations

Sergiu Cataranciuc, Galina Braguţa

Abstract

In the present work the notions of dm-convexity and dm-
convex function are defined. Some properties of these functions
are mentioned. We study the complexes of multi-ary relations
for which the median function is dm-convex.

Keywords: complex of multi-ary relations, m-dimensional
chain, dm-convex set, dm-convex function.

1 Introduction

Solving of many optimization problems consists in examination of some
functions on discrete structures. In this context, convex functions have
a special role. The functions property of being convex guarantees ela-
boration of efficient methods that determine the optimal solution of
problem. For these reasons, the determination of conditions that ens-
ure the convexity of special functions in a complex of multi-ary relations
is important. Such functions frequently occur in process of studying
location problems and are known as median-functions.

Let ℜn+1 = (R1, R2, ..., Rn+1) be a complex of multi-ary relations,
determined by a finite set of elementsX = {x1, x2, ..., xp}. The complex
of relations ℜn+1 was thoroughly defined and studied in the work [1].
According to the definition, Rm, 1 ≤ m ≤ n+ 1 represents a subset of
the Cartesian product of rank m of the set X and is not empty.

We choose two elements rk ∈ Rk, rq ∈ Rq, 1 ≤ k, q < n + 1. We
generalize the concept of chain in ℜn+1 used in works [2], [3].

c©2017 by Sergiu Cataranciuc, Galina Braguţa
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The sequence of the elements rmt1 ,r
m
t2
,...,rmts ∈ Rm, max{k, q} < m ≤

n+ 1, with following properties:

a) rk ⊂ rmt1 ;

b) rq ⊂ rmts ;

c) rmtp ∩ rmtp+1
∈ Rl, 1 ≤ l < m, for any p, 1 ≤ p ≤ s− 1,

is called m-dimensional chain with the extremities in rk ∈ Rk, rq ∈ Rq

and is denoted by Lm(rk, rq) = [rmt1 ,r
m
t2
,...,rmts ].

The number s is called the length of the chain Lm(rk, rq). The
minimal length of m-dimensional chains that connect elements rk ∈

Rk and rq ∈ Rq is called m-distance between these elements and is
denoted by dm(rk, rq). If between two elements rk ∈ Rk and rq ∈ Rq

there does not exist m-dimensional chain, then it is considered that
dm(rk, rq) = +∞.

2 d
m-convex functions

We mention that m-distance is defined on the elements of the set R1 ∪

R2 ∪ ... ∪Rm−1, m ≥ 2, and possesses metric properties:

a) dm(rk, rq) ≥ 0, for any two elements rk ∈ Rk and rq ∈ Rq, and
dm(rk, rq) = 0 if and only if rk ∈ rq;

b) dm(rk, rq) = dm(rq, rk), for any two elements rk ∈ Rk, rq ∈ Rq;

c) dm(rk, rq) ≤ dm(rk, rl) + dm(rl, rq), for any three elements rk ∈

Rk, rl ∈ Rl, rq ∈ Rq (k, l, q < m).

Definition 1. A complex of multi-ary relations ℜn+1 = (R1, R2, ..., Rn+1)
is m-conex if for any two elements rk ∈ Rk and rq ∈ Rq, 1 ≤ k, q < m
an m-dimensional chain Lm(rk, rq) exists.

Theorem 1. If ℜn+1 is an m-dimensional complex of multi-ary rela-
tions, then it is also h-dimensional for any h, 2 ≤ h < m.

Let ℜn+1 = (R1, R2, ..., Rn+1) be a complex of multi-ary relations
and ℜm−1 = (R1, R2, ..., Rm−1), 2 ≤ m ≤ n+ 1 be a subcomplex from
ℜn+1. On elements of ℜn+1 we define a function with values in the set
of real numbers f : ℜn+1 → R.
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Similarly to those mentioned in the paper [4], this function is dm-
convex if for any three elements rk, rq and rh from subcomplex ℜm−1

with the property dm(rk, rq) = dm(rk, rh) + dm(rh, rq) in ℜn+1, the

following inequality holds: fm(rh) ≤ dm(rh,rq)

dm(rk,rq)
fm(rk)+ dm(rk,rh)

dm(rk ,rq)
fm(rq).

Of course, the function is defined if the right side of the inequality
exists.

Theorem 2. If fm is a dm-convex function defined on the complex
of multi-ary relations ℜn+1, then every local extremum of this function
coincides with the global.

Theorem 3. The sum of two dm-convex functions defined on the com-
plex of multi-ary relations ℜn+1 is a dm-convex function in ℜn+1.

Definition 2. The set A ⊂ R1 ∪ R2 ∪ ... ∪ Rm−1 is called m-convex
in ℜn+1 if every m-dimensional chain that connects two elements of A
contains only elements from A.

Theorem 4. If f is a dm-convex function in ℜn+1 and α is a real
number, then the set {r ∈ A = R1 ∪R2 ∪ ... ∪Rm−1 : f(r) ≤ α} is dm-
convex in the complex of multi-ary relations ℜn+1 = (R1, R2, ..., Rn+1).

3 Median function in the complex of multi-ary

relations

Median functions are used to solve services centre location problems.
A location problem on a complex of multi-ary relations consists in
minimisation of the function F : A = R1 ∪R2 ∪ ... ∪Rm−1 → R of the
following type: Fm(r) =

∑

z∈A

dm(r, z).

The solving of such problems is quite complicated, because, in ge-
neral case, the function Fm(r) does not have any properties that would
facilitate the determinations of the extremum. However, for some spe-
cial complexes, the situation becomes quite favourable.

If rk = rq we say that the chain Lm(rk, rq) is a m-dimensional cycle.
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Theorem 5. If the complex of multi-ary relations ℜn+1 does not con-
tain h-dimensional cycles, h ≤ m, then the median function Fm(r) is
dm-convex.

Theorem 6. If Fm(r) is a dm-convex median function, then all extre-
mal points of the function Fm(r) generate a convex subcomplex in the
complex of multi-ary relations.

4 Conclusion

In this paper there are presented the results about the study of convex
functions properties, based on the generalization of the notion of metric
convexity, known from graphs theory. The obtained results contribute
to the development of the convexity theory in complexes of multi-ary
relations.

Acknowledgments. Results from this paper are based on resear-
chers within the project 15.817.02.37A.
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The Explicit Solution and Computer 

Modeling of the Spatial 

Electrodynamic Problem 

Irina Dmitrieva, Dmitriy Larin 

Abstract 

The specific case of the differential Maxwell system in the 

rectangular coordinates is considered as the basic mathematical 

model of electromagnetic wave propagation in the spatial guided 

structures. The general wave PDE (partial differential equation) is 

got including all scalar components of the electromagnetic field 

vector intensities. Equivalence of this PDE to the original Maxwell 

statement is proved. Mathematical simulation of the electrodynamic 

phenomenon is done using boundary value problem regarding the 

aforesaid wave equation. This problem is solved explicitly. The 

obtained exact formulae are used for numerical implementation and 

computer modeling of the considered engineering process. 

Keywords: differential Maxwell system, general wave 

equation. 

1 Preliminaries 

The explicit solution of the following differential Maxwell system in the 

Cartesian coordinates is proposed here using analytic technique of [1]:  

    









.,0div;,div

;;, 00

HBBEDD

EiiDHBE



rotrot

(1) 

In Sys. (1):  tzyxHE ,,,,


 are the unknown electromagnetic field vector 

intensities and harmonic regarding the time argument;  tzyxBD ,,,,


377



Irina Dmitrieva, et al. 

Figure 1. The first scalar component of the vector electric intensity 

378



The Explicit Solution and Computer Modeling of … 

Figure 2. The first scalar component of the vector magnetic intensity 
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describe the electric and magnetic induction;  tzyxi ,,,


,  tzyx ,,,

determine the current (charges) and the charge density;  ,,  – are the 

positive real constants denoting specific conductivity, electric and 

magnetic permeability of the medium; t0 ; rot , div represent the 

classical differential field operators. 

2 Main Results 

The method [1] reduces Sys. (1) to the general wave PDE regarding all 

scalar components of the electromagnetic field vector intensities 

    2,1,  kfFi kk


,           (2) 

where:      grad1,,,;, 1221 fzyxhfHFEF


, and h


is 

determined by the problem physical viewpoint. The boundary value 

problem is formulated for Eq. (2) describing electrodynamic process in 

the finite spatial guided structure. The exact solution of given problem 

substantially simplifies numerical implementation and computer modeling 

of the considered electromagnetic phenomenon. The field behavior is 

shown partially by Figs. 1 and 2. 

3 Conclusion 

Technique of the present paper allows solving effectively electrodynamic 

problems with mathematical models in terms of the systems of PDEs. 
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Hydromagnetic natural convection 

flow of fractional nanofluids over a 

permeable moving heated plate 

Constantin Fetecau, Dumitru Vieru, Waqas Ali Azhar 

Abstract 

General exact expressions are established for dimensionless 

temperature and velocity fields, Nusselt number and the skin 

friction coefficient corresponding to the hydromagnetic natural 

convection flow of fractional water based nanofluids past a 

permeable moving infinite vertical plate with heat generation. The 

influence of fractional parameter on the heat transfer through the 

fluid is graphically underlined and discussed when the ramped type 

heated plate uniformly slides in its plane. 

Keywords: natural convection flow, fractional nanofluids. 

1 Introduction 

It is the well known fact that the fractional models are more flexible in 

describing the behavior of viscoelastic materials. They can more 

accurately describe different physical phenomena in comparison to the 

ordinary models. Our purpose here is to provide exact general solutions 

for the unsteady hydromagnetic natural convection flow of water based 

fractional nanofluids past an infinite permeable heated vertical plate with 

constant heat generation. The obtained results, which are presented under 

integral form in terms of the Wright function, can be used to generate 

exact solutions for any flow of this type. Finally, a special case is 

considered and the influence of fractional parameter on the heat transfer in 

two fractional nanofluids is graphically underlined and discussed when a 

ramp type heated plate is uniformly moving in its plane. 
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2 Formulation of the problem 

Let us consider the unsteady natural convection flow of the water based 

nanofluids past a permeable infinite vertical moving plate with a constant 

heat source. The nanoparticles of Cu (Copper) or 
2TiO (Titanium oxide) 

have a uniform shape and size and are in thermal equilibrium state with 

the base fluid. The plate is in the plane 0y   of a fixed Cartesian 

coordinate system and a uniform magnetic field of strength B is applied 

along the y-axis. The initial temperature of the whole system is .T
 At the 

moment t 0  the plate, whose temperature is maintained at the value 

  ( ),wT T T g t   begins to slide along the x-axis with a time 

dependent velocity ( ).Uf t  Here wT  and U are constants while the 

dimensionless functions ( )f   and g( ) are piecewise continuous and 

(0) (0) 0.f g   The plate being infinite all physical entities, except the 

pressure, are functions of y and t only. 

Bearing in mind the above assumptions, the dimensionless boundary 

layer equations of the fractional model in the Boussinesq approximation 

are given by 

2

0 0 0 1 0 22

( , ) ( , )
( , ) ( , ) ( , ),t

u y t u y t
a D u y t a S a a T y t a a u y t

y y

  
   

 
     (1) 

2

0 0 0 12

( , ) T( , )
( , ) ( , ); y, t 0,t

T y t y t
b D T y t b S b bT y t

y y

  
   

 
(2) 

with the initial and boundary conditions 

 ( ,0) 0, ( ,0) 0, 0; (0, t) f(t), T(0, t) g(t), t 0,u y T y y u         (3) 

Here, ( , )u y t  and ( , )T y t  are the velocity and the temperature of the 

fluid, tD

is the Caputo fractional derivative and 0 1 2 0 1, , , ,a a a b b  are

characteristic coefficients of the nanofluid [1]. 
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3 Solution of the problem 

The system of fractional partial differential equations (1) and (2), with the 

initial and boundary conditions (3) is solved using the Laplace transform 

technique. The corresponding solutions are: 

0 2 2
2 0 2 02

2 2

0 0

2 ( )
( , ) exp 0, ; .

4 4

tb S
y b b y b yg t s

T y t e u W s dsdu
u s u







   
       

   
      (4) 

   

0

2

2

0
0 2 0 3

0 02
3

0 0

2

1

2

0 02

1

1 ( )
( , ) exp (0, ; )

42

( )
( , ; , ) ( , ; , ) ( ; , ) ( ;u,p ) ,

2

ta S
y

t

ub

y a a y f t s
u y t e a u W us dsdu

u su u

d g t s
y t b b y t a a s u p s e duds

sd d




 










  
      

 


    



 

 

   (5) 

where ( , ; )W a b   is the Wright function [2], the star “*” denotes the 

convolution product and 

 
21

( ;u,a) (0, ; ut ).a ut ae erfc a u W
u

 


 
    
 

                          (6) 

2

2

0

1
( , ;a, ) exp (0, ; ) .

42

aS
yy a ay

y t b e bu W ut du
ut u u







 
      

 
     (7) 

A simple analysis clearly shows that ( , )T y t  and ( , )u y t , given by Eqs.

(4) and (5) satisfy all imposed initial and boundary conditions. 

The corresponding Nusselt number is given by 

2

0 0

00 ( )
( ) (0, ; ) .

2 2

tb ubb S e g t s
Nu g t W us ds

su u




 


     (8) 

4 Some numerical results and conclusions 

In order to get some physical insight of present results, we consider the 

motion due to a ramp-time heating plate that is moving with uniform 
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velocity. Corresponding solutions are obtained substituting (t)f  by H(t)  

(the Heaviside unit step function) and g(t)by (t)tH  in Eqs. (4) and (5). 

In Figs. 1a and 1b, for comparison temperature profiles corresponding to 

Cu-water and TiO2-water fractional/ordinary nanofluids and 

fractional/ordinary fluids are depicted for different values of fractional 

parameter . In both cases the influence of fractional parameter is 

significant and the heat transfer is stronger for ordinary fluids/nanofluids. 

Figure 1. Temperature profiles at different values of fractional parameter 
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Parallel algorithm to solve the bimatriceal

subgames generated by the informational

extended strategies

Anatolie Gladei

Abstract

Parallel algorithm for mixed system with shared and distri-
buted memory to solve bimatrix game generated by the informa-
tional extended strategies is described.

Keywords: computer science, game teory, parallel system,
parallel algorithm.

According to [1] we can construct the normal form of the bimatrix
game

Γ
(
θα
1
, θβ

2

)
=

〈
I, J,Aα, Bβ

〉
,

where Aα = ||a
iαj j

β
i

||
j∈J
i∈I , B

β = ||b
iαj j

β
i

||
j∈J
i∈I , i

α
j ∈ Iα, jβi ∈ Jβ to be refer-

red to as informational non-extended game generated by the informa-

tional extended strategies
(
θα
1
, θβ

2

)
. The game Γ

(
θα
1
, θβ

2

)
is played as

follows: independently and simultaneously each player k = 1, 2 choo-
ses the informational non-extended strategy i ∈ I, j ∈ J , after that
the players 1 and 2 calculate the value of the informational extended
strategies iαj = θα

1
(j) and jβi = θβ

2
(i) , after that each player calculates

the payoff values a
iαj j

β
i

, b
iαj j

β
i

and with this the game is finished. It is

clear that for all strategy profiles (i, j) in the game Γ = 〈A,B〉 the follo-

wing realization
(
iαj = θα

1
(j), jβi = θβ

2
(i)

)
in terms of the informational

extended strategies will correspond.

c©2017 by Anatolie Gladei

385



Anatolie Gladei

To determine the Nash equilibrium profiles in the bimatrix game of

type Γ
(
θα
1
, θβ

2

)
we must do the following:

• using the ”combinatorial algorithm” construct for all α, β the
sets Iα, Jβ;

• for all fixed α, β construct the payoff matrices Aα = ||a
iαj j

β
i

||
j∈J
i∈I ,

Bβ = ||b
iαj j

β
i

||
j∈J
i∈I ;

• using existent algorithms determine the set NE
(
Aα, Bβ

)
of Nash

equilibrium profiles in the bimatrix game with the matrices Aα

and Bβ.

The basic parallel strategy consists of three main steps. The first

step is to partition the input into several partitions of almost equal
sizes. The second step is to solve recursively the subproblem defi-
ned by each partition of the input. Note that these subproblems can
be solved concurrently in the parallel system. The third step is to
combine or merge the solutions of the different subproblems into a so-
lution for the overall problem. The success of such strategy depends
on whether or not we can perform the first and third steps efficiently
[2]. To release the first step of the parallel strategy, that is to release
data paralelization, we use the open source Scalable Linear Algebra
PACKage (ScaLAPACK) [3]. Four basic steps are required to call a
ScaLAPACK routine.

• Initialize the process grid.

• Distribute the matrix on the process grid.

• Call ScaLAPACK routine.

We describe the parallel algorithm to determine for all informational
extended strategies of the player 1 θα

1
∈ Θ1 = {θα

1
: J → I}κ1

α=1
and

respectively θβ
2

∈ Θ2 =
{
θβ
2
: I → J

}κ2

β=1

of the player 2, the Nash
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equilibrium profiles of the informational non-extended bimatrix games

Γ
(
θα1 , θ

β
2

)
=

〈
I, J,Aα, Bβ

〉
, Aα = ||a

iαj j
β
i

||
j∈J
i∈I ,

Bβ = ||b
iαj j

β
i

||
j∈J
i∈I , i

α
j ∈ Iα, jβi ∈ Jβ

generated by the informational extended strategies
(
θα
1
, θβ

2

)
. For con-

veniences we introduce the following notations âij ≡ a
iαj j

β
i

and b̂ij ≡

b
iαj j

β
i

for all i ∈ I, j ∈ J. So the bimatrix game Γ
(
θα
1
, θβ

2

)
=

〈
I, J,Aα, Bβ

〉
is equivalent to the following bimatrix game Γ̂

(
θα
1
, θβ

2

)
=

〈
I, J, Âα, B̂β

〉
, where Âα = ‖âij‖

j∈J
i∈I , B̂β =

∥
∥
∥b̂ij

∥
∥
∥
j∈J

i∈I
. Denote by

NE
[
Γ̂
(
θα
1
, θβ

2

)]
the set of all Nash strategy profiles in the game

Γ̂
(
θα
1
, θβ

2

)
.

The parallel algorithm to find the set of all equilibrium profiles

((i∗(α, β), j∗(α, β)) ∈ NE
[
Γ̂
(
θα
1
, θβ

2

)]

for all fixed α = 1,κ1 and β = 1,κ1 consists of the following steps.

1. Using the MPI programming model and open source library

ScaLAPACK-BLACS, initialize the processes grid {(α, β)}β=1,κ2

α=1,κ1

,

and the root MPI process broadcasts to all (α, β)−MPI proces-
ses the initial matrices A = ||aij ||

j∈J
i∈I , and B = ||bij ||

j∈J
i∈I of the

bimatrix game Γ = 〈A,B〉 .

2. For all fixed type-players α and β all fixed MPI processes (α, β)
using the OpenMP directives and combinatorial algorithm con-
struct the sets Iα,J β (i.e. construct the informational extended

strategies .θα
1
, θβ

2
) whereupon the matrices Âα = ‖âij‖

j∈J
i∈I , B̂β =

∥
∥
∥b̂ij

∥
∥
∥
j∈J

i∈I
, where âij = a

iαj j
β
i

, b̂ij = b
iαj j

β
i

and iαj ∈ Iα, jβi ∈ Jβ .

3. All fixed MPI processes (α, β) using the OpenMP functions and
ScaLAPACK routines eliminate from matrix Âα and B̂β the lines
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that are strictly dominated in matrix Âα and columns that are
strictly dominated in matrix B̂β. Finally we obtain the matrices(
Ãα, B̃β

)
, where Ãα = ||ãij ||

j∈J̃

i∈Ĩ
, B̃β = ||̃bij ||

j∈J̃

i∈Ĩ
and cardinals

∣
∣
∣Ĩ
∣
∣
∣ ≤ |I| ,

∣
∣
∣J̃
∣
∣
∣ ≤ |J | .

4. All fixed MPI processes (α, β) using the OpenMP functions, Sca-
LAPACK routines and existing algorithm determine all Nash
equilibrium strategy profile of the bimatrix game with matrices

Ãα, B̃β and construct the set NE
[
Γ̂
(
θα
1
, θβ

2

)]
for bimatrix game

with matrices Âα and B̂β.

5. Using ScaLAPACK-BLACS routines, the root MPI process gat-

hers from processes grid {(α, β)}β=1,κ2

α=1,κ1

the set NE
[
Γ̂
(
θα
1
, θβ

2

)]

of strategy profiles.

For this algorithm a C++ program has been developed using MPI
functions, OpenMP directives and ScaLAPACK routines. Program has
been testing on the control examples on the Moldova State University
HPC cluster. The test results were consistent with theoretical results.
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[1] Boris Hâncu, Mihai Coĉırlă. Approaches for solving bimatrix in-
formational extended games. Studia Universitatis Moldaviae, seria
Stiinte exacte si economice, nr. 7(87), Chisinau 2015. pp. 71–85.

[2] Joseph Jaja. An Introduction to Parallel Algorithms. Addison-
Wesley Publishing Company, Inc. 1992

[3] http://www.netlib.org/scalapack/

Anatolie Gladei

Moldova State University

Email: gladei@mail.ru, gladei@mail.md

388



Proceedings of the 4
th

 Conference of Mathematical Society of Moldova 

CMSM4’2017, June 25-July 2, 2017, Chisinau, Republic of Moldova 

© 2017 by Anatol Godonoagă, Lilian Golban 

Modification of the Savage's decision 

criterion for continuous processes 

Anatol Godonoagă, Lilian Golban 

Abstract 

In decision-making under uncertainty, the decision-maker has 

no information regarding the occurrence of any states of nature. In 

this article is presented a modification of the Savage’s decision 

model for the situations when the decision-maker has an infinite 

number of alternatives and the number of states of nature is finite.  

Keywords: decision criteria, function of regrets, states of 

nature, uncertainty. 

1 Introduction 

The uncertainty is associated with situations where decisions are taken in 

conditions with minimum information about the occurrence of 

uncontrollable factors. These situations occur, as a rule, when the 

likelihood of uncontrollable factors is unknown and there are no means to 

determine them. Based on the linear models, the mathematical model and 

algorithm proposed in this research characterize much of the production 

activity. 

2 Modification of the Savage's decision-making models 

In classical game theory, for each pair Uu ),(  , a certain utility 

function ),( ur  corresponds to the decision-maker. It is admitted that the 

set of decision variants U  is convex and contains an infinity set of 

elements and   - a finite set of states of nature. Economically speaking, 

the indicator ),( ur  may represent the cost or the income of an economic 

system. 

It is considered a situation, described quantitatively in the form: 
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



n

j

jj uCur
1

)(),(     (1) 

  















(3)           ,1       ,

 (2)               ,1 ,
1

njuuu

mibua

jjj

n

j

ijij

where: 

),( ur  – the utility expressed in monetary units  for the pair ),( u ; 

(2) - (3) – the system of restrictions. 

This paper considers the regret criterion or the Savage’s criterion [1]. 

According to Savage [2, 3], the regret is defined as the evaluation of 

loss by the decider if he does not select the best alternative reported to the 

realization of a certain state of nature. Therefore, if, for a given state of 

nature, the guaranteed income is represented by the function (1), which 

would be obtained for the state ),(max)),((:)( **  ururu
u

 , the new 

function obtains the following aspect: 0),()),((),( *   urururS , 

where ),()),(( *  urur   represents the value of the regret, and )(* u

- the optimal decision for the state  . In particular circumstances, for 

some two states of nature the obtained functions have the following 

aspect: 

),()),((),( 111
*

1  urururS  ,   (4) 

       ),()),((),( 222
*

2  urururS  .    (5) 

The problem of maximizing the objective function (named as 

function Savage) is: 

     min,max 





uruR SS (6) 

Firstly, the Simplex method is applied to solve N problems of the 

following type: 

    



n

j

jijii uCuruR
1

max)(;     (7) 

for Ni ,1  with restriction (2)–(3). 
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It is assumed that  *iu - optimal solution for problem i,   






** i
ii uRR . 

It is defined:    iiiS urRur  , , *   - the value of the regret when 

the decision Uu  is applied, but not the decision  *iu . It can be 

demonstrated that the functions  iS ur ,  and  uRS  are convex [4]. 

Therefore, goal is to solve the problem: 

    
Uu

iS
Ni

S uruR


 min,max
1

               (8) 

Applying the method of the generalized gradient [4, 5], there will be 

described an algorithm to solve the problem of Savage’s function on the 

domain U . 

For each ,...,1,0k  there is generated a set of points 

Uuuuu kk  ,...,,...,, 110
. Initial point 0u  is given and is taken by the 

decision-maker from U . Having the approximation of ku , the next point 
1ku  is determined as: 

  .1 k
k

k
U

k huu 
 (9) 

Here: ; ,...2,1,0k  

 

        

   
 

.

           .0)(    ,  ,a ..., ,a ..., ,a

,max,:  

m, ..., 2, 1,i  0)(  

  , ,..., ,...,  grad

kkk ii1i

1

k

1






































k

i

T

nj

i
k

S
Ni

kk
S

k
i

Tk
n

k
j

kk
S

k

uif

ururwhere

uif

CCCuR

k





   (10) 

In order to converge to solution, the series kh  must satisfy the 

following constraints: . ,0 ,0
0k






 kkk hhh  

If 0)(  k
i u , the approximation of 1ku is determined applying the 

generalized gradient of function  uRS , calculated for point 
kuu  . 

Otherwise, if ,0)(  k
i u
k

the approximation of 1ku is determined 
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applying the generalized gradient of the function 
ki

 , which is most 

exceeded in the point kuu  . 

3 Conclusion 

This article describes the aspects of the importance of decision-making 

process under uncertainty. Due to this, we propose a modification of 

classical Savage's criterion for conditions where the decision-maker has 

an infinite number of alternatives for situations that relate to substantiating 

and making decisions, described in the terms of linear models. The 

proposed algorithm can provide effective and real-time solutions to 

various practical situations when the decision-maker does not have 

sufficient relevant information on the manifestation of uncontrollable 

factors. 
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Mathematical modeling of the elastic-plastic

barrier behavior under high-speed load

Elena Gutuleac, Grigore Secrieru

Abstract

The problem of numerical research of the elastoplastic bar-
rier behavior under high-speed loads (arising during projectile
explosion) is considered. The results of calculations have shown
the mathematical model effectiveness to determine the maximum
strength characteristics of the barrier. In addition numerical so-
lutions are useful to identify areas of high stress and predict con-
struction behavior under various loads.

Keywords: mathematical model, elastoplastic deformation,
detonation.

1 Introduction

In the present paper we carried out a two-dimensional numerical mo-
deling of elastic-plastic structures behavior under high loads. Mathe-
matical model takes into account the formation and propagation of
shock waves, unloading waves, the substance elasticity, plasticity, and
other factors.

Physical processes of structural loading are complex and non-
stationary. For their modeling and behavior research the systems of
partial differential equations and the corresponding models of the of
elastic-plastic medium are used.

The possibilities of analytical methods and application of solutions
based on physical experiments are quite limited. The progress in the
study of complex scientific and technical problems of solid mechanics

c©2017 by Elena Gutuleac, Grigore Secrieru
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is dealt with using modern computer technologies and numerical met-
hods. The applied numerical research is optimal for determining high
stress zones and minimizing possible risks at various loads.

Researchers are trying to create precise mathematical models, nu-
merical algorithms and data analysis systems to obtain reliable numeri-
cal solutions for more efficient designs of resistance constructions. The
implementation of these solutions is a complex task because of their
large number of parameters.

2 Problem formulation and mathematical mo-

del

We consider the non-stationary problem of dynamic loading and the
study of the stress-strain state of structures with intensive influence on
them, taking into account elastoplastic deformations. The interaction
with the physically non-linearly deformable ground surrounding the
investigated construction is also taken into account. It is necessary
to consider the following factors: the interaction of strain and stress
waves, the appearance of plastic deformations and contact interaction
of structural elements with the surrounding environment.

The implemented mathematical model is elastic-plastic-damage
model [1], [2]. It is well known that under high-loading many ma-
terials behave as substances which have both elastic and plastic pro-
perties. The computational experiments were carried out according to
the finite-difference method, which is the modified Wilkins scheme [3].
The specific feature of the method is the use of the Lagrangian compu-
tational grid and a special library of parameters for equations of state
for different environments.

3 Results

The modeling results of the shell-free projectile impact on the well
walls are described. The projectile is closely located to the well wall.

394



Mathematical modeling of the elastic-plastic barrier behavior

Consider a ground layer, the plane of which is perpendicular to the
axis of the well. The well is located horizontally, and is filled with
drilling fluid. Casing walls are made of steel. Outside construction is
surrounded by ground.

Figure 1. Pressure at control points on the steel casing.

Pressure in three control points on the ”steel-ground” boundary are
shown in Fig. 1. According to calculations, the maximum pressure is
reached at the point closest to the charge. It is 0.0049 MBar for the
given initial and boundary conditions.

4 Conclusion

Numerical calculations of the shell-free charge impact on barrier walls
have been carried out. The calculations can be useful for optimizing
of the explosive charge characteristics in case of gas, oil or water pro-
duction, by opening productive layers through casing perforation [4].

The modified mathematical model and the developed numerical
method allow calculating the stress-strain state of elastoplastic struc-
ture under intensive dynamic loads. It makes possible to conduct a
wide range of numerical studies in this field.
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Parallel algorithm to find the Bayes-Nash

solution in the informational extended game

Boris Hancu

Abstract

The Bayes-Nash solutions for informational extended games
are discussed. Also the parallel algorithm for mixed system with
shared and distributed memory to determine the Bayes-Nash so-
lutions in the bimatrix informational extended games are presen-
ted.

Keywords: games, strategies, Bayes-Nash solution, parallel
algorithm.

1 Informational extended game

We consider the perfect and complete bimatrix game in strategic form
Γ = 〈I, J,A,B〉. According to [1] we can describe the informational ex-
tended strategies in bimatrix game as follows. For all fixed α = 1, ..., nm

and β = 1, ...,mn we construct the vectors iα =
(
iα
1
, iα

2
, ..., iαj , ..., i

α
m

)

and jβ =
(
jβ
1
, jβ

2
, ..., jβi , ..., j

β
n

)
. The iα vector’s elements mean the fol-

lowing: if the player 2 will choose the column j ∈ J , then the player
1 will choose the line iαj ∈ I. Respectively, the jβ vector’s elements
mean the following: if the player 1 will choose the line i ∈ I, then the
player 2 will choose the column jβi ∈ J. So we can introduce the fol-

lowing definition. Denote by Iα =
{
iαj ∈ I : iαj 6= iαk ,∀j, k ∈ J, j 6= k

}

and Jβ =
{
jβi ∈ Jβ : jβi 6= jβr ∀i, r ∈ I, i 6= r

}
. Then the set Iα ⊆ I,

c©2017 by Boris Hancu
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respectively Jβ ⊆ J, is the set of informational non extended stra-
tegies of the player 1, respectively 2, generated by the informati-

onal extended strategies iα, respectively jβ. Denote by G

(

1
inf

⇆ 2

)

the bimatrix game in the informational extended strategies, descri-
bed above. This game is in the imperfect information on the set
of informational extended strategies. According to [2], for bima-

trix game G

(

1
inf

⇆ 2

)

we construct the Selten-Harsanyi [3] type nor-

mal form game Γ∗

Bayes =
〈
K, {Rk}k∈K , {Uk}k∈K

〉
. Here the set of

type-players is K = K1 ∪ K2, where K1 = {α = 1, ..., nm} and
K2 = {β = 1, ...,mn} ; the sets of pure strategies of the type-players

are Rk =

{
Iα k ∈ K1,
Jβ k ∈ K2.

; the payoff functions of the type-player k

are Uk =

{
Ak

(
{p(β/α)}β∈K2

)
k ∈ K1,

Bk

(
{q(α/β)}α∈K1

)
k ∈ K2,

whereAk

(
{p(β/α)}β∈K2

)

and Bk

(
{q(α/β)}α∈K1

)
are the payoff matrixes of the type-players. In

the other words for all fixed “believer probabilities” p(β/α) and q(α/β),

the payoff matrix for the type-players k ∈ K1 is Ak

(
{p(β/α)}β∈K2

)
=

‖ãij‖
j∈J
i∈I , where ãij =

∑

β∈K2

p(β/α)a
iαj j

β
i

, and for the type-players

k ∈ K2 is Bk

(
{q(α/β)}α∈K1

)
=

∥
∥
∥b̃ij

∥
∥
∥
j∈J

i∈I
, where b̃ij=

∑

α∈K1

q(α/β)b
iαj j

β
i

.

Here iαj ∈ Iα and jβi ∈ Jβ. The Selten-Harsanyi game Γ∗

Bayes me-
ans the following: for all fixed type-players k1 and k2 (i.e. the player
1 chooses the informational extended strategy α and the player 2 choo-
ses the informational extended strategy β) and “believer probabilities”
{p(β/α)}β∈K2

of the player 1 (respectively {q(α/β)}α∈K1
of the player

2) we obtain the bimatrix game Γ∗ =
〈
I, J,Ak1

(
{q(α/β)}β∈K2

)
,

Bk2

(
{q(α/β)}α∈K1

)〉
in the non informational extended strategies. So

Selten-Harsanyi game Γ∗

Bayes “generates” the big number of the bima-
trix games of type Γ∗.
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2 Parallel algorithm

According to [2] determining all Bayes-Nash equilibrium profiles, we
can determine the all Nash equilibrium profiles for all bimatrix games
of type Γ∗ in the non extended strategies. So the parallel algorithm to
find the all equilibrium profiles consists of the following main steps.

1. Using the MPI programming model, generate the virtual me-
dium of MPI-process communication (MPI Communicator) with
linear topology. Root process broadcasts the initial matrices
A = ||aij ||

j∈J
i∈I , and B = ||bij ||

j∈J
i∈I of the bimatrix game Γ =

〈I, J,A,B〉 .

2. MPI process with rank k1 generates the “beliver-probabilities”
p(β/α) for all β, and MPI process with rank k2 generates the
“beliver-probabilities” q(α/β) for all α.

3. Using the MPI programming model and open source library
ScaLAPACK-BLACS [4], initialize the processes grid. All fixed
MPI processes (α, β) using the OpenMP directives and combina-
torial algorithm construct the sets Iα, Jβ .

4. MPI process with rank k constructs payoff matrix Uk.

5. Using open source library ScaLAPACK-BLACS, MPI process
broadcasts the matrix Uk.

6. All fixed MPI processes, using the OpenMP functions, elimi-
nate from matrix Ak1 (�) and from matrix Bk2 (�) the lines that
are strictly dominated in matrix Ak1 (�) and columns that is
strictly dominated in matrix Bk2 (�) . Finally we obtain the ma-

trices Âk1

(
{p(β/α)}β∈K2

)
and B̂k2

(
{q(α/β)}α∈K1

)
.

7. All fixed MPI processes using the MPI, OpenMP functions, Sca-
LAPACK routines and existing algorithm, determine all Nash
equilibrium profiles in the bimatrix game with matrices Âk1 (�) ,
B̂k2 (�) and construct the set of Nash equilibrium profiles in the
bimatrix game with matrices Ak1 (�) , Bk2 (�) .
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8. Using ScaLAPACK-BLACS routines, the root MPI process gat-
her the set of Nash equilibrium profiles in the bimatrix game with
matrices Uk.

3 Conclusion

For this algorithm a C++ program has been developed using MPI
functions, OpenMP directives and ScaLAPACK routines. Program has
been tested on the control examples on the Moldova State University
HPC cluster. The test results were consistent with theoretical results.
In order to determine all sets of Nash equilibrium profiles in bimatrix
games generated by information strategies, it is recommended to use
exascale HPC systems.
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Conditional Characteristic Functions for the

Multidimensional Markov Random Flight

Alexander D. Kolesnik

Abstract

Series representations for the conditional characteristic functi-
ons of the symmetric Markov random flight in the Euclidean
space R

m, m ≥ 3, corresponding to one, two and three chan-
ges of direction, are given.

Keywords: Markov random flight, conditional characteristic
functions, transition density, random walks, higher dimensions.

Consider the stochastic motion of a particle that, at the initial time
instant t = 0, starts from the origin 0 = (0, . . . , 0) of the Euclidean
space R

m, m ≥ 3, and moves with some constant speed c. The initial
direction is a random m-dimensional vector with uniform distribution
on the unit sphere Sm

1 =
{
x ∈ R

m : ‖x‖2 = x21 + · · ·+ x2m = 1
}
.

The motion is controlled by a homogeneous Poisson process N(t)
of rate λ > 0 as follows. At each Poissonian instant, the particle
instantaneously takes on a new random direction distributed uniformly
on Sm

1 and keeps moving with the same speed c until the next Poisson
event occurs, then it takes on a new random direction again and so on.

Let X(t) = (X1(t), . . . ,Xm(t)) be the particle’s position at time
t > 0 which is referred to as the m-dimensional symmetric Mar-
kov random flight. At arbitrary time instant t > 0 the parti-
cle, with probability 1, is located in the closed m-dimensional ball
Bm
ct =

{
x ∈ R

m : ‖x‖2 = x21 + · · ·+ x2m ≤ c2t2
}
.

Consider the distribution function Φ(x, t) = Pr {X(t) ∈ dx} , x ∈

Bm
ct , t ≥ 0, of the process X(t), where dx ⊂ R

m is the infinitesimal

c©2017 by Alexander D. Kolesnik
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element with the Lebesgue measure µ(dx) = dx1 . . . dxm. For arbitrary
fixed t > 0, the distribution Φ(x, t) consists of two components.

The singular component is referred to the case when no Poisson
events occur on the time interval (0, t) and it is concentrated on the
sphere Sm

ct = ∂Bm
ct =

{
x ∈ R

m : ‖x‖2 = x21 + · · · + x2m = c2t2
}
. In this

case, at time instant t, the particle is located on the sphere Sm
ct and the

probability of this event is: Pr {X(t) ∈ Sm
ct } = e−λt.

If at least one Poisson event occurs on the time interval (0, t), then
the particle is located strictly inside the ball Bm

ct and the probability of
this event is: Pr {X(t) ∈ int Bm

ct} = 1− e−λt.

The part of Φ(x, t) corresponding to this case is concentrated in the
interior: int Bm

ct =
{
x ∈ R

m : ‖x‖2 = x21 + · · ·+ x2m < c2t2
}
of the ball

Bm
ct and forms its absolutely continuous component.

Let p(x, t), x ∈ Bm
ct , t > 0, be the density of distribution Φ(x, t).

It has the form: p(x, t) = p(s)(x, t) + p(ac)(x, t), x ∈ Bm
ct , t > 0, where

p(s)(x, t) is the density of the singular component of Φ(x, t) concentra-
ted on Sm

ct and p(ac)(x, t) is the density of the absolutely continuous
component of Φ(x, t) concentrated in int Bm

ct .

The singular part of density is given by the formula: p(s)(x, t) =
e−λt Γ(m

2
)

2πm/2(ct)m−1
δ(c2t2 − ‖x‖2), x ∈ R

m, t > 0, where δ(x) is the Dirac

delta-function. This is the density of the uniform distribution on Sm
ct .

The absolutely continuous part of density has the form: p(ac)(x, t) =
f (ac)(x, t)Θ(ct−‖x‖), x ∈ R

m, t > 0, where f (ac)(x, t) is some positive
function absolutely continuous in int Bm

ct and Θ(x) is the Heaviside
unit-step function.

Various properties of the Markov random flight X(t) were studied
in [1, 2, 3]. However, the explicit formulas for the density of X(t) were
obtained in a few dimensions only. In the following theorem we present
series representations for conditional characteristic functions of X(t).

Theorem. For arbitrary dimension m ≥ 3, the conditional charac-

teristic functions H1(α, t), H2(α, t), H3(α, t) of the symmetric Mar-

kov random flight X(t) corresponding to one, two and three changes of

directions, respectively, are given by the formulas:
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H1(α, t) =

√
π

2

(m− 2) Γ
(
m
2

)

Γ
(
m−1
2

)

×

∞∑

k=0

Γ
(
k + m−1

2

)
(ct‖α‖)k−1/2

(2k)!! Γ
(
k + m

2

)
(k +m− 2)

Jk+1/2(ct‖α‖),

(1)

H2(α, t) =
3(m− 2)2 Γ

(
m
2

)

Γ
(
m−1
2

)

×

∞∑

k=0

ξk (ct‖α‖)k−1

2k (2k + 3(m− 2)) Γ
(
k + 3

2

) Jk+1(ct‖α‖),

(2)

H3(α, t) = 12

√
π

2

(
(m− 2) Γ

(
m
2

)

Γ
(
m−1
2

)

)2

×

∞∑

k=0

ηk (ct‖α‖)k−3/2

(2k + 2)!! (k + 2(m− 2))
Jk+3/2(ct‖α‖),

(3)

α = (α1, . . . , αm) ∈ R
m, ‖α‖ =

√
α2
1 + · · · + α2

m, m ≥ 3, t > 0,

where Jν(z) are the Bessel functions and the coefficients ξn, ηn are given

by the formulas:

ξk =

k∑

l=0

Γ
(
k − l + 1

2

)
Γ
(
l + m−1

2

)

(k − l)! Γ
(
l + m

2

)
(l +m− 2)

, k ≥ 0,

ηk =
k∑

l=0

Γ
(
k − l + m−1

2

)
Γ
(
l + m−1

2

)

Γ
(
k − l + m

2

)
Γ
(
l + m

2

)
(l +m− 2)

, k ≥ 0.

Corollary. For arbitrary dimension m ≥ 3, the inverse Fourier

transformation of the conditional characteristic function H1(α, t) yields
the conditional density p1(x, t) corresponding to the single change of

direction that has the form:
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p1(x, t) = F−1
α

[√
π

2

(m− 2) Γ
(
m
2

)

Γ
(
m−1
2

)

×

∞∑

k=0

Γ
(
k + m−1

2

)
(ct‖α‖)k−1/2

(2k)!! Γ
(
k + m

2

)
(k +m− 2)

Jk+1/2(ct‖α‖)

]

(x)

=
2m−3 Γ(m2 )

πm/2 (ct)m
F

(
m− 1

2
,−

m

2
+ 2;

m

2
;
‖x‖2

c2t2

)

Θ(ct− ‖x‖),

(4)
x = (x1, . . . , xm) ∈ R

m, m ≥ 3, t > 0,

where F (α, β; γ; z) is the Gauss hypergeometric function and Θ(x) is
the Heaviside unit-step function.

One can check that the series in formulas (1), (2) and (3) are con-
vergent for any fixed t > 0. However, inverting functions (2) and (3)
in α is a very difficult problem.
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Monte Carlo Simulation of the Finite-Velocity

Random Walks in One and Two Dimensions

Alexander D. Kolesnik, Alexandru Nani

Abstract

Computer simulation of the finite-velocity random motions
on the line R

1 and in the plane R
2 based on Monte Carlo al-

gorithms, is done. The main statistical characteristics of the
processes obtained by using such algorithms, are presented.

Keywords: Finite-velocity random walks, computer simula-
tion, Monte Carlo algorithms, statistical estimates.

1. Preliminaries. It is known (see [1, formula (3.7)]) that the
probability distribution function (PDF) of the Goldstein-Kac telegraph
process X(t), represented by a stochastic motion with constant speed
c > 0 on the real line R1 and driven by a homogeneous Poisson process
of rate λ > 0, for arbitrary x ∈ (−ct, ct], t > 0, is given by the formula:

Pr {X(t) < x}

=
1

2
+

λxe−λt

2c

∞∑

k=0

(λt)2k

22k(k!)2

(

1 +
λt

2k + 2

)

F

(

−k,
1

2
;
3

2
;
x2

c2t2

)

,
(1)

where F (α, β; γ; z) is the Gauss hypergeometric function.
The absolutely continuous part of the PDF of the planar Markov

random flightX(t) = (X1(t),X2(t)) has the form (see [2, formula (20)]):

Pr {X(t) ∈ dx} =
λ

2πc

exp
(
−λt+ λ

c

√
c2t2 − ‖x‖2

)

√
c2t2 − ‖x‖2

µ(dx), (2)

x = (x1, x2) ∈ int C(0, ct), µ(dx) = dx1dx2, ‖x‖ =
√

x2
1
+ x2

2
, t > 0,
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whereC(0, ct) ⊂ R
2 is the disc of radius ct centred at the origin 0 ∈ R

2.

Using (2), the following formula was obtained (see [2, Remark 2]):

Pr {X(t) ∈ C(0, r)} = 1− exp

(

−λt+
λ

c

√
c2t2 − r2

)

, 0 ≤ r < ct,

(3)
yielding the probability of being, at time instant t > 0, in arbitrary
disc C(0, r) of radius r < ct centred at the origin 0.

While the PDFs (1) and (2) are of a great interest, their application
for evaluating many important characteristics, such as the probabili-
ties of being in some curvilinear subsets (for example, in a subdisc
C(x0, r) ⊂ C(0, ct) with shifted centre x0 6= 0), is a fairly difficult and
sometimes impracticable analytical and computational problem. To
overcome this difficulty, the Monte Carlo algorithms were built for si-
mulating the telegraph process X(t) and the symmetric planar Markov
random flight X(t). Based on these algorithms, a computer software
was created that enables us to obtain, with very good accuracy, the sta-
tistical estimates of some their important characteristics, such as the
distributions, expectations, variances, the probabilities of being in some
subsets, etc. The language C++ was used for modelling the processes
and calculating the statistical estimates of their basic characteristics.
Some results of this simulation are presented below.

2. Simulation of the telegraph random process. A computer
program for simulating the Goldstein-Kac telegraph process X(t) on
the real line with arbitrary constant speed c > 0 and arbitrary intensity
of switchings λ > 0, was elaborated. The results of the simulation
related to the PDF of X(t) are given in Table 1 below.

Statistical estimates of PDF (third column) obtained for various va-
lues of spatial variable x are compared with the respective exact values
of PDF (second column) calculated by means of analytical formula
(1). We see that our simulation program yields very good accuracy
with stabilization at the fourth digit. To reach this accuracy, 3 · 108

independent realizations of X(t) were generated. Calculation of each
statistical estimate in Table 1 takes about 2 minutes.
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Values of x Exact values of PDF Statistical estimates of PDF

−3.0 0.14777 0.14780
−2.5 0.19661 0.19660
−2.0 0.25059 0.25060
−1.5 0.30892 0.30892
−1.0 0.37065 0.37063
−0.5 0.43473 0.43473
0.0 0.50000 0.49999
0.5 0.56527 0.56526
1.0 0.62935 0.62939
1.5 0.69108 0.69106
2.0 0.74941 0.74944
2.5 0.80339 0.80334
3.0 0.85223 0.85227

Table 1. PDF of the telegraph process X(t) (for c = 2, λ = 1, t = 2)

3. Simulation of the planar random flight. A computer pro-
gram was created for simulating the planar Markov random flight X(t)
with uniform choice of directions whose absolutely continuous part of
PDF is given by (2) (see [2, Theorem 2]). Statistical estimates for the
probabilities of being in the disc C(0, r) of radius r < ct centred at the

Values of radius r Exact probability Statistical estimates

1 0.01038 0.01038
2 0.04108 0.04107
3 0.09085 0.09085
4 0.15767 0.15765
5 0.23877 0.23877
6 0.33097 0.33100
7 0.43067 0.43065
8 0.53417 0.53416
9 0.63785 0.63789
10 0.73860 0.73860
11 0.83487 0.83490

Table 2. Probabilities Pr{X(t) ∈ C(0, r)} (for c = 4, λ = 1, t = 3)
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origin 0 and their comparison with exact probabilities calculated by
means of analytical formula (3), are given in Table 2. In Table 3 the
statistical estimates for the probabilities of being in the disc C(x0, r)
with different shifted centres x0 6= 0 and radii, are given. Note that no
explicit analytical formulas exist for such cases of shifted centres.

Centre x0 = (x0
1
, x0

2
) Values of radius r Statistical estimates

(1, 1) 2 0.04052
(−1, 3) 4 0.14730
(−1, 9) 2.5 0.03523
(7,−4) 3 0.05713
(0, 11) 1 0.00454
(5,−7) 0.5 0.00151
(3,−4) 7 0.36964
(9,−7) 0.5 0.00109
(0, 5) 3 0.07635
(1, 4) 4 0.14036

Table 3. Probabilities Pr{X(t) ∈ C(x0, r)} (for c = 4, λ = 1, t = 3)
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Stationary Nash Equilibria for Stochastic Games

Dmitrii Lozovanu, Stefan Pickl

Abstract

The problem of the existence of stationary Nash equilibria in
stochastic games with finite state and action spaces is considered.
Necessary and sufficient conditions for the existence of stationary
Nash equilibria in the considered class of games are presented.

Keywords: Stochastic games, stationary strategies, Nash
equilibrium, optimal stationary strategies.

1 Introduction

In this paper we consider stochastic games with average and discounted
payoffs. A stochastic game consists of the following elements [1, 2]:

- a state space X (which we assume to be finite);

- a finite set Ai(x) of actions with respect to each player

i ∈ {1, 2, . . . , n} for an arbitrary state x ∈ X;

- a payoff f i(x, a) with respect to each player i ∈ {1, 2, . . . , n} for

each state x ∈ X and for an arbitrary action vector a ∈
∏

i

Ai(x);

- a transition probability function p : X×
∏

x∈X

n∏

i=1

Ai(x)×X → [0, 1]

that gives the probability transitions pax,y from an arbitrary x ∈ X

to an arbitrary y ∈ Y for a fixed action vector a ∈
∏

i

Ai(x), where
∑

y∈X

pax,y = 1, ∀x ∈ X, a ∈
∏

i

Ai(x);

- a starting state x0 ∈ X.
The game starts in the state x0 and the play proceeds in a sequence
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of stages. At stage t players observe state xt and simultaneously and
independently choose actions ait ∈ Ai(xt), i = 1, 2, . . . , n. Then nature
selects state y = xt+1 according to probability transitions patxt,y

for given
action vector at = (a1t , a

2
t , . . . , a

n
t ). Such a play of the game produces

a sequence of states and actions x0, a0, x1, a1, . . . , xt, at, . . . that defi-
nes the corresponding stream of stage payoffs f1t = f1(xt, at), f

2
t =

f2(xt, at), . . . , fnt (xt, at) t = 0, 1, 2, . . . , where ft for t ≥ 1 are
random variables with probability distributions in the state-stage indu-
ced by the stochastic process with given starting state x0 and actions
at, t = 0, 1, 2, . . . . The average stochastic game is the game with pa-
yoffs of players

ωi
x0

= lim
t→∞

inf E

(
1

t

t−1∑

τ=0

f iτ

)

, i = 1, 2, . . . , n,

The stochastic game with discounted sum of stage payoffs is the game
with payoffs of players

σi = lim
t→∞

inf E

(
t−1∑

τ=1

λτf iτ

)

, i = 1, 2, . . . , n,

where λ, 0 < λ < 1, is a given discount factor.

2 Stochastic games in stationary strategies

A strategy of player i ∈ {1, 2, . . . , n} in a stochastic game is a mapping
si that for every state xt ∈ X provides a probability distribution over
the set of actions Ai(xt). If these probabilities take only values 0 and
1, then si is called pure strategy, otherwise si is called mixed strategy.
If these probabilities depend only on the state xt = x ∈ X (i. e. si do
not depend on t), then si is called stationary strategy. This means the
set of stationary strategies Si of player i can be regarded as the set of
solutions of the following system






∑

ai∈Ai(x)

si
x,ai

= 1, ∀x ∈ X;

si
x,ai

≥ 0, ∀x ∈ X, ∀ai ∈ Ai(x).
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The stochastic game with average payoffs in the terms of stationary

strategies is formulated as follows: Let S
i
, i ∈ {1, 2, . . . n} be the

corresponding stationary strategies of the players 1, 2, . . . , n. On S =

S
1
× S

2
× · · · × S

n
we define n payoff functions

ψi
θ(s

1, s2, . . . , sn) =
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n∏

k=1

sk
x,ak

f i(x, a1, a2 . . . an)qx,

i = 1, 2, . . . , n

where qx(x ∈ X) are determined uniquely from the following system
of linear equations




qy −
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n∏

k=1

sk
x,ak

p
(a1,a2,...,an)
x,y qx = 0, ∀ y ∈ X;

qy + wy −
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n∏

k=1

sk
x,ak

p
(a1,a2,...,an)
x,y wx = θy, ∀y ∈ X

for an arbitrary fixed profile s = (s1, s2, . . . , sm) ∈ S. The functions
ψi
θ(s

1, s2, . . . , sn), i = 1, n represent the payoff functions for the average

stochastic game in normal form 〈{S
i
}i=1,n, {ψ

i
θ(s)}i=1,n 〉. Here θy ≥ 0

for y ∈ X and
∑

y∈X θy = 1. If θy = 0, ∀y ∈ X \ {x0} and θx0
= 1,

then we obtain an average stochastic game with starting state x0. If
θy > 0, ∀y ∈ X and

∑
y∈X θy = 1, then we obtain an average stochas-

tic game when the play starts in the states y ∈ X with probabilities
θy. The stochastic game with discounted payoffs in the terms of stati-

onary strategies is formulated as follows: Let S
i
, i ∈ {1, 2, . . . n} be

the corresponding stationary strategies of the players 1, 2, . . . , n. On

S = S
1
× S

2
× · · · × S

n
we define n payoff functions

ϕi(s1, s2, . . . , sm) =
∑

y∈Y

θyσ
i
y, i = 1, 2, . . . , n

where σix for x ∈ X satisfy the conditions

σix − λ
∑

y∈X

∑

(a1,a2,...,ak)∈A(x)

n∏

k=1

sk
x,ak

p
(a1,a2,...,an)
x,y σiy =

∑

(a1,a2,...,ak)∈A(x)

n∏

k=1

sk
x,ak

f i(x, a1, a2 . . . , an), ∀x ∈ X, i = 1, n.
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The functions σ1x0
(s), σ2x0

(s), . . . , σnx0
(s) on S = S

1
× S

2
× · · · × S

n

define a game in normal form 〈{S
i
}i=1,n, {σ

i
x0
(s)}i=1,n 〉.

Using the above models we derived necessary and sufficient con-
ditions for the existence of stationary Nash equilibria in the case of
two-player average stochastic games and in the case of n-player sto-
chastic games with discounted payoffs.

3 Conclusion

For an arbitrary average stochastic game with two players and for an
arbitrary n-player stochastic game with discounted payoffs stationary
Nash equilibria exist. The presented game models in normal form can
be used for determining stationary Nash equilibria.
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On Stability Improvement of 

Environment’s Dynamic Systems 

Marcel Migdalovici, Sergiu Cononovici, Grigore Secrieru, Luige 

Vlădăreanu, Daniela Baran, Gabriela Vlădeanu 

Abstract 

The stability improvement of environment’s dynamic system 

evolution is described on general case of dynamic systems that 

depend on parameters. The important property of stable regions 

separation from the free parameters domain of the dynamic system, 

accepted for all dynamic systems from the literature without 

mathematical justification is detailed here calling theoretical results 

from some branches of mathematics. 

Some mathematical conditions on separation are identified 

using the study on matrix components functions that define the 

linear dynamic system because some properties of such functions 

can be transmitted to matrix eigenvalues. One case of specified 

dynamic system is described. 

Keywords: environment, dynamic system, stable region 

separation, mathematical model. 

1 Introduction 

The aim of the paper is to emphasize the mathematical characterization 

aspects of the environment through the mathematical characterization of 

the dynamic systems that approach the phenomena from the reality. The 

mathematical branches that offer the resources of characterization can be 

from real analysis theory, dynamic systems theory, matrix theory, etc. 

In each dynamic system that depends on parameters from the 

literature it is exposed the property of separation between stable and 

unstable regions in the free parameters domain of the dynamic system. We 

observe for a dynamic system model which approaches the phenomenon 

from the environment that has the mathematical property of separation 

between stable and unstable region in the free parameters domain of the 
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system, property confirmed by the dynamic systems analyzed in the 

literature. 

The stable regions existence in the free parameters domain is an 

important property of the environment’s dynamic system that permits 

selection of compatible criterion on the parameters in the stable region for 

stable evolution optimization, in other words permits stability control. 

2 On environment’s dynamic system model 

The linear dynamic system or the “first approximation” of the nonlinear 

dynamic system, in the general case as depending on parameters, is 

described by real matrix for the examples from the literature [1]-[4]. The 

components of such real matrix are assumed to be piecewise continuous 

functions of the system parameters. 

The properties on the stability for the dynamic system that depend on 

parameters are defined by the properties of eigenvalues functions for the 

system matrix. The eigenvalues of the system matrix are the same as for 

the matrix in Hessenberg corresponding form. The Hessenberg form of 

the matrix is recognized by the condition  0ija   for  2 ,i n 

1j i  . The dynamic system can be substituted by the dynamic system 

using equivalent Hessenberg form of the system matrix that facilitates the 

stability analysis of the system. 

The system matrix in Hessenberg form is denoted by  A . The 

matrix   A I , where    is real or complex value and  I  unity matrix, is 

also a matrix in Hessenberg form. The value    defines “the shift of 

origin” for the matrix. The shift of origin for the matrix is important 

because it allows the transposition of the real matrix that defines the 

dynamic system in the complex domain through the complex value   . 

The QR algorithm for the matrix  A  with the shift of origin is defined 

by the relations: 

1 ( ) ,  ,  1,2,...T T

s s s s s s s s s s sQ A k I R A R Q k I Q A Q s            (1) 

In the above relations, by 1 A  the initial matrix  A  of the system in 

Hessenberg form is denoted,  sk  is “shift of origin”,  sQ  is orthogonal 

matrix,  sR  is upper triangular matrix,  ,  2sA s   is also in Hessenberg 

form. 
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The shift of origin, with the initial value    sufficiently close to one 

initial matrix eigenvalue, real or complex, imposes acceleration of the QR 

algorithm convergence to respective eigenvalue on the similar diagonal 

form of the matrix. This is another important motivation for using QR 

algorithm with the shift of origin. 

Some aspects on the stability study for the dynamic system defined by 

autonomous equation  d d ( )x t f x  that accepts 0x   as solution. Many 

particular dynamic systems are of the autonomous form. The 

function 1 ( ) ( ( ),..., ( ))T
nf x f x f x  is assumed to depend on  n  dimensional 

variable x  and admit the Taylor expansion near the origin so that: 

      
0

d d ( );  ( ) ; , 1,..., .ij ij i j x
x t a x g x a f x x i j n


             (2)      

The following theorem is due to Liapunov: 

Theorem 1 [1], [2]. The evolution of the dynamic system (2) is 

asymptotic stable in origin if the real parts of all eigenvalues of the 

matrix  ,ijA a     , 1,...,  i j n are strictly negative. The evolution of the

dynamic system (2) is unstable in origin if the real part of at least one 

eigenvalue of the matrix  ,ijA a     , 1,...,  i j n is strictly positive.

The above theorem analyzes only punctual stability of the system. 

Below we formulate the theorem on separation between stable and 

unstable regions from the free parameters domain of the dynamic system. 

Theorem 2 [3]. If the linear dynamic system defined by the real 

matrix  A , in the Hessenberg form, has the piecewise continuous 

components of the matrix as functions of the dynamic system free 

parameters and the QR algorithm with the shift of origin in complex 

domain is convergent to the similar diagonal form corresponding to the 

matrix  A  and assures that the real part of the eigenvalue functions from 

the diagonal form are also piecewise continuous, then these conditions 

impose the separation between stable and unstable regions of the dynamic 

system in the free parameters domain. 

3 On particular dynamic system model 

We describe the evolution imposed to walking biped robot by kinematics 
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evolution proposed by Cononovici (2016) to each leg, here in vertical 

plane, defined by the pivot point  Bt , knee joint  Qt  and base point  Pt . 

The base point  Pt  is moving on the selected ellipse arc between 

points IP  and FP , in cycling evolution of biped walking robot, using 

uniform accelerated displacement on the horizontal direction up to the 

median point MP , for one leg, and symmetric displacement assured up to 

the final point FP  of the robot leg. The joint point  Bt  attached to the 

body of the robot is moving simultaneously with point  Pt , having linear 

route parallel to the axis  Ox , using uniform displacement at each cycle. 

The evolution imposed for knee joint  Qt , can be also improved by 

selection of parameters from the free parameters domain of the system to 

respect one compatible criterion of optimization. 

4 Conclusion 

The general case of the dynamic systems that depend on parameters 

from the environment is analyzed. The separation of stable regions from 

the free parameters domain is a fundamental mathematical property of the 

systems that can be accepted as first axiom of the environment. The 

possibility of stable evolution improvement is emphasized. 
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Numerical modeling of the performance

characteristics for exhaustive polling models

Gheorghe Mishkoy, Lilia Mitev

Abstract

Some analytical results for exhaustive polling models with
DD priority, such as distribution of busy period and auxiliary
characteristics are presented. Numerical solutions for k - busy
period are obtained and a numerical example is presented.

Keywords: polling system, DD priority, Laplace-Stieltjes
transform, busy period.

1 Introduction

It is well known that polling models find different applications in vari-
ous fields, such as telecommunications, economy, industry, etc. Priority
queueing systems are a large class of queueing systems where the reque-
sts that enter into the system are distinguished by their importance.

Let’s consider a queueing system Mr|Gr|1|∞ with DD (Discretio-
nary Discipline) priority: if the service time of ak–request is less than
set value θk, (k = 2, . . . , r), then the arrived request with priority hig-
her k (σk−1–request) achieves absolute priority, otherwise – the relative
one. The durations of service ak–requests are independent random va-
riables Bk with distribution function Bk(x), (k = 1, . . . , r).

The switching takes place only at service’s interruption and at re-
turning to the interrupted service. If the service of aj-request is in-
terrupted by arriving ai-request, i < j, then, at once switching to Li

(→ i) flow begins. When the system will be free from requests of pri-
ority higher than j, the switching (→ j) begins, and only then the

c©2017 by Gheorghe Mishkoy, Lilia Mitev
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server is ready to serve the interrupted request. The durations of swit-
ching (→ i) are random variables Ci with distribution function Ci(x),
(i = 1, . . . , r). The variables Bk and Ci are independent. An arbitrary
switching (→ k) also may be interrupted by arriving σk−1-request.

Remark 1. For models with 2 priorities classes and non-zero switching

time the DD discipline was considered in [1].

Remark 2. The interruptions within service and switching processes

generate a large class of models (schemes) which we will note by indexes

I.J, where I reflects the evolution of interrupted service, but J – the

evolution of interrupted switching [2].

2 Busy period distribution

We’ll introduce notations. We’ll denote by Π(x), Πk(x), Πkk(x), Hk(x),

Π
(n)

kk (x), Nk(x), Πk(x), Πkk(x) the distribution function of busy period,
k–period, kk–period, k–service cycle, kkn–period, k–cycle of switching,
Πk–period, Πkk–period and by π(s) . . . πkk(s) – their Laplace-Stieltjes
transforms (the definition of these see [3]). Let’s consider also σk =
a1 + · · ·+ ak, where ak–the parameter of Poisson flow of k–th priority.

Theorem 1. For all schemes

σkπk(s) = σk−1πk−1(s+ ak − akπkk(s)) + akπkk(s), (1)

πkk(s) = hk(s+ ak − akπkk(s)), (2)

σkπk(s) = σk−1πk−1(s + ak) + σk−1{πk−1(s+ ak[1− πkk(s)])−

−πk−1(s+ ak)}νk(s+ ak[1− πkk(s)]) + akπkk(s), (3)

πkk(s) = νk(s+ ak[1− πkk(s)])πkk(s), (4)

where hk(s + ak − akπkk(s)) and νk(s + ak − akπkk(s)), for each of

the schemes I.J, are determined from certain relations respectively, for

s = s+ ak − akπkk(s).
Applying the analysed results implies considerable difficulties, the

main one – the complexity of the results, their ”incompetence” to use
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them in applications. The obtained results are expressed in terms of
recurrent functional equations, Laplace or Laplace-Stieltjes transforms.
To determine, for example, Πk(t), we have to solve the equations (1)-
(4), then to take the numerical inversion of Laplace-Stieltjes transforms.
Even to determine the average value of busy period – it’s not such a sim-
ple task, firstly it is necessary to calculate the value of Laplace-Stieltjes
transform of the function πk(s) in some points. The overcoming of dif-
ficulties lies in elaboration of numerical algorithms and software.

3 Numerical modeling

Example 1 Let consider a generalized queueing system with DD pri-

ority, formed from k queues, k = 1, 10. The requests arrive according

to Poisson flow with parameters: ak ={0.2, 0.5, 0.3, 0.1, 0.8, 0.4, 0.5,

0.6, 0.7, 0.8}. The distribution function taken by Bk(x) and Ck(x) is

Exponential, with the following parameters: bk ={0.2, 0.1, 0.8, 0.2,

0.1, 0.1, 0.6, 0.3, 0.2, 0.1}, ck ={0.2, 0.4, 0.9, 0.3, 0.1, 0.1, 0.2, 0.3,

0.2, 0.1}, s = 0.1 and the set value θk = 0.3.

Table 1. Numerical results of distribution function for k-busy period

k hk(s) νk(s) πk(s)

1 0.500000 0.800000 0.070265

2 0.580376 0.614390 0.290623

3 0.154268 0.000000 0.148270

4 0.091700 0.099534 0.002969

5 0.271605 0.053822 0.006230

6 0.857142 0.666666 0.319176

7 0.244746 0.000000 0.204944

8 0.115296 0.000000 0.092162

9 0.050040 0.050810 0.001310

10 0.228612 0.035938 0.005375
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4 Conclusion

The main purpose of study of polling models is to determine the perfor-
mance characteristics of the system. This paper deals with modeling of
busy period and auxiliary characteristics for DD discipline. The deve-
lopment of algorithms and elaboration on their basis of software allows
solving numerically (1)-(4) and reducing the time for analysis of the
real systems.
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Application of the operator-difference method to

the simulation of MHD astrophysical problems

Sergey Moiseenko, Gennadii Bisnovatyi-Kogan, Nikolai Ardelyan

Abstract

We represent some features of the application of completely
conservative Lagrangian operator-difference numerical scheme on
triangular gird of variable structure to the simulation of the mag-
netohydrodynamical (MHD) astrophysical problems. The appli-
cation of the Lagrangian grid requires its remapping during the
evolution of the fluid flow. There are different ways of interpo-
lation of the grid functions on a remapped grid. We discuss in
detail the procedure of conservative remapping of grid functions
during grid reconstruction procedure. The scheme described in
the paper gave us possibility to simulate different astrophysical
problems.

Keywords: numerical methods, operator-difference scheme,
magnetohydrodynamics

1 Introduction

Numerical simulations of fluid flows in astrophysics have a number of
features such as big gradients of functions, wide range of variations of
physical parameters, presence of free boundaries and necessity to take
into account a number of physical processes. Another important point
is to keep conservation of angular momentum.

One of the suitable methods for numerical simulations of astrophy-
sical problems is a completely conservative operator-difference scheme
suggested, developed and studied in papers [1, 2] and references therein.

c©2017 by Sergey Moiseenko, Gennadii Bisnovatyi-Kogan, Nikolai Ardelyan
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The scheme was successfully applied to numerical simulation of the
collapse problem of cold rapidly rotating protostellar cloud [3] and mag-
netorotational supernova explosion [4].

2 Brief description of the method

The idea of the used completely conservative operator-difference
scheme is to construct grid analogs of basic operators such as grad, div,
rot with good properties.

We know that the differential operator grad is conjugated to the
differential operator −div, rot is conjugated to the −rot. The grid
analogs of these operators are constructed in the way to keep that
property.

The scheme is constructed on the triangular Lagrangian grid of
variable structure. The triangular grid consists of cells and knots. Some
grid functions are defined in knots (velocity, coordinates, gravitational
potential, etc.), some grid functions are cell-functions (they are defined
in cells) (density, pressure, temperature, magnetic field).

During the evolution of the flow the Lagrangian grid is ’frozen in’ to
the matter. Due to the non uniformity of the flow such as non uniform
contraction or expansion, presence of vortexes the grid is distorting, one
can get triangles with rather sharp or obtuse angles. In such situations
the approximation properties of the method can be decreased.

For that reason the grid is restructured at every time step in the
regions of the computational domain where it is necessary. The recon-
struction of the triangular grid consists of 3 simple procedures: elemen-
tary restructuring, addition of the knot in the middle of the connection,
removal of the knot (see for details [3]). These three simple procedures
allow one not only to improve the quality of the grid, but also to con-
centrate the triangular grid in the regions of flow where we need higher
spatial resolution, or to rarefy the grid minimizing a number of grid
points. It means that the grid reconstruction procedure allows one to
adapt dynamically the grid.

Grid reconstruction procedure consists of two different stages. At
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first we change the topology of the grid, improving its quality and/or
dynamically adapt it. At the second stage we need to interpolate grid
functions, defined in cells to a new grid structure. One of the simplest
ways is just to interpolate the grid function to a new structure using
any smooth interpolation procedure. That simple approach works sa-
tisfactorily for the case when we have smooth grid functions. In the
case of strong gradients of functions (e.g. shock waves) simple interpo-
lation leads to the development of nonphysical oscillations in the gas
flow.

We suggest to interpolate the grid functions by conditional minimi-
zation of specially constructed functionals. For example, to interpolate
the density grid function we minimize the following functional:

F (ρi) = Σ(ρi − ρ∗i )
2.

under condition mnew = mold. Here ρi – new values of the density
grid function, ρ∗ – interpolated on a new grid structure density grid
function mold and mnew – mass of reconstructing domain before and
after grid reconstruction procedure.

Similar conditional minimization of functionals are used for the cal-
culation of pressure, magnetic field components. For the pressure the
condition for the functional is a local conservation of the total energy.
For calculation of the new values of the magnetic field components we
minimize appropriate function under conditions of conservation of the
magnetic energy and magnetic flux simultaneously.

The described way of the interpolation of cell grid function allows
one to keep conservation laws on the grid.

Detailed description of interpolation procedure of grid function
using conditional minimization of the functionals will be published el-
sewhere.

3 Conclusion

In the paper we described application of the completely conservative
operator-difference method on triangular Lagrangian grid of variable
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structure to the simulation of some MHD astrophysical problems.
Acknowledgments. Grants NSh-6579.2016.2 and I.7P have sup-

ported part of the research for this paper.
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Input-Output model for Republic of Moldova

Elvira Naval, Veronica Ghereg

Abstract

The twenty three aggregated brunches of the Moldovan eco-
nomy are considered. Squared 23x23 direct expenditure coef-
ficients matrix was constructed. Optimization problem dealing
with price energy growing impact on the final demand (Gross
Domestic Product) has been formulated and solved.

Keywords: input-output table, optimization model, pure in-
dustry, final demand, direct costs coefficients matrix.

1 Introduction

W. W. Leontief [1] propounded the scheme of an input-output mo-
del. Idea of input-output coefficients (direct yield costs) of a single
production industry for other production industries, suggested and im-
plemented by W. W. Leontief is the ground of contemporary input-
output model. These models were improved theoretically and practi-
cally: transiting from static model to dynamic one with the capital
investments lag of one or more years, considering environmental factor,
analysing and estimating the world economy’s further development, fo-
recasting and forming long-term and medium-term indicative planning
of national economy. In this paper optimization model based on the
input-output square matrix coefficients is considered. Square 23x23
matrix of input-output coefficients of the Moldovan economy in the pe-
riod 1996-2014 was constructed. The problem of higher energy prices
impact on the final demand has been formulated and solved.

2 Problem statement

The square part of the input-output table has n rows and n columns,
and the figure in the i row and j column represents the amount of pro-
duct from industry i delivered to industry j in a particular calendar

c©2017 by Elvira Naval, Veronica Ghereg
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year. The result of dividing that quantity by the total output of indu-
stry j is a coefficient measuring input per unit of output. In this way
the n×n part of the flow table is converted to an n×n matrix of coef-
ficients, where the entries in the j column include (when supplemented
by the j column of factor inputs per unit of output) all inputs needed
to produce one unit of output of industry j. This column of coefficients
represents the average technology in use in industry j. For simplicity
it is assumed that every industry is pure, so that a single characteristic
output is produced using a single average technology. Denote A – the
n× n matrix of interindustry coefficients , x – the n× 1 vector of out-
puts, y – the likewise n×1 vector of final deliveries, while F is the k×n
matrix of factor inputs. Mathematical models in input-output econo-
mics are reffered to per unit of output (one row for each of k factors)
and total factor use is the vector f . Then the basic static input-output
model is the following:

(I −A)−1y = x, (1)

f = Fx, (2)

where (I−A)−1 is the inverse matrix, so called the Leontief inverse. It
is also known as the multiplier matrix, because the economy needs to
produce a larger amount of a specific good (the amount of final demand
for that good), final demand y needs to be multiplied by the obtained x.
Equations (1) - (2) comprise the basic static input-output model. Much
attention is given to conditions that guarantee the multiplier matrix is
strictly positive. Such conditions make sense because basic economic
logic requires that an increase ∆y > 0 in final demand in equation (1)
results in an increase ∆x > 0 in total output. If the matrix (I − A)−1

is not strictly positive, this logic could be violated, i.e. equation (1)
always has a solution x > 0 for y > 0. In fact, the study of equation
(1) has led to a number of equivalent statements about A, such as:

1. (I −A)−1 > 0.

2. (I − A)−1 = I + A + A2 + A3 + . . . , that is, the series
∑

Ak

is convergent.

3. All successive principal minors of (I −A)−1 are positive.
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4. There exists a choice of units such as all row sums or all column
sums of A are smaller than 1.

5. A has a dominant eigenvalue λ, where 0 < λ < 1.

6. The dominant eigenvalue λ of A gets larger, if one element of A
is increased, and λ gets smaller, if one element of A is decreased.

Statement 2 says that output x = y+Ay+A(Ay)+. . .. So the quantity
y should be produced, plus Ay, which is the vector of input to produce
y, etc. Statement 3 is the well-known Hawkins-Simon condition, which
assures that each subsystem is productive, i.e., each subgroup of in-
dustries i, j, k, requires less input from the economic system than it
produces in terms of outputs. According to statement 4, the Brauer-
Solow condition, value added in each sector is positive in coefficient
matrices derived from input-output tables in (nominal) money values.
That is, units for measuring physical output are such as each one costs
one monetary unit (thus, if the output unit is lei, the unit price is 1.0
by definition). Assuming that the matrix describes a viable economy,
this property assures that if output is measured in any chosen physical
units, there exists a set of prices such as each industry has a positive
value added (i.e., revenue left to pay for factor inputs). The dominant
eigenvalue λ is a measure of the size of intermediate outputs produced
in the economy in relation to total production. In other words, λ in-
dicates the net surplus of an economy in the sense that the larger λ
is (within the statement 5), the smaller the net output will be. The
surplus so defined can be consumed, invested for growth, devoted to
environmental protection, etc. Statement 6 is useful for interpreting
the role of technological change. Earlier interbranch models, based on
the input-output tables for economy of the Republic of Moldova in
the period 1998-2004, were examined in [2]. In present article, using
the input-output model described above, we tried to solve the follo-
wing problem. Republic of Moldova imported all kinds of electric and
thermic energy therefore its economy is very sensitive to energy prices
movement, because these prices have a great impact over all economy,
especially on goods and services. The energy industry, being a mono-
poly, determines prices by itself, in such a manner affecting economy
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as a whole. The principal goal of this research is to determine how
prices in energy sector influence other industries. In this respect input-
output table will be used to formulate optimization problem restricted
by input-output constraints.

3 Optimization Input-Output model

Now, having elaborated input-output tables for 23 aggregated indus-
tries of Moldovan economy in the period 1996-2014, let‘s formulate the
optimization model. Suppose, that energy prices grow at 1,5, i.e. ener-
getic technological column growth on 1,5. How demand vector (i.e.
Gross Domestic Product) will be modified in such circumstances? Gi-
ven the vector of output x, the problem is to maximise

∑
yi restricted

by (I −A)−1y = x or
maxD =

∑
yi, (3)

under the following restrictions:
(I −A)−1y = x (4)

This optimisation problem, with known output for 23 industries and
input-output table for 2014 year, was solved using the Solver applica-
tion. Calculations effectuated at different rate (0,5;1,0; 1,5; etc.) have
demonstrated that final demand diminishes together with energy prices
growing. And the conclusion is the following: growth in prices should
be done cautiously.
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Wolfram Mathematica as an environment for 

solving concave network transportation problems 

Tatiana Pașa, Valeriu Ungureanu 

Abstract 

In this work, we consider a transportation problem on a network 

with concave cost functions and constrained flows on arcs and 

expose an approach to its solving via Wolfram language algorithm 

implementation in Wolfram Mathematica System. Our original 

results are compared with results obtained by applying built-in 

Wolfram Language functions on a family of test problems. 

Keywords: network transportation problem, optimal solution, 

concave function. 

1 Introduction 

The concept of transport network may be used to model various economic 

processes to obtain minimal cost programs for commodity transportation 

from sources to destinations knowing the available quantities and demands. 

We describe the problem of network transportation for which the 

quantities of commodity transported through each arc is constrained both 

from above and bottom, and the costs of transportation associated with arcs 

are defined by linear-concave functions on arc flows. 

2 Problem formulation 

Let us consider the network transportation problem described by the graph: 

      ,      ,      . 

A real function of production and consumption       is defined on 

the finite set of its vertices  . Linear-concave cost functions        are 

defined for each arc flows. 

We need to determine such a flow    that minimizes nonlinear 

objective function                . 
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2.1 Standard network 

The quantity       of commodity available for the source    coincides 

with the required demand       of destination    in commodity units. 

It is required to solve the nonlinear optimization problem: 

         
   

     

where   is a set of admissible flows on described by the following 

system: 

     

       

      

       

  

         
           

         

  

with both non-negativity constraints and constraints on the transportation 

capacities of arcs               , for all    . 

2.2 Network with one source and several destinations 

The quantity       of commodity available for the source     coincides 

with the required demand           for the destinations     in commodity 

units. 

We need to solve the nonlinear optimization problem: 

         
   

     

where   is a set of admissible flows on described by the following 

system: 

     

       

      

       

 

 
 
 

 
        

    

    

           

         

 

with both non-negativity constraints and constraints on the transportation 

capacities of arcs               , for all    . 

2.3 Network with several sources and destinations 

The quantity            of commodity available for the sources   
coincides with the required demand           for the destinations    in 

commodity units. 

We need to solve the nonlinear optimization problem: 

                , 
where   is a set of admissible flows on   described by the following 

system: 
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with both non-negativity constraints and constraints on the transportation 

capacities of arcs               , for all    . 

3 An algorithm and Wolfram Mathematica program 

An original approach to solving the above problems is considered. It may 

be exposed briefly by the means of the Wolfram language:  
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The above code is exposed for a particular example. But it may be used in 

the same manner to solve any problem.  

4 Conclusion 

A series of tests were provided on different test problems to verify 

efficiency of the approach and program. Our original results have been 

compared with results obtained by applying built-in Wolfram Language 

functions on a family of test problems. The approach, algorithm and 

program proved to be more efficient than built-in Wolfram Mathematica 

System functions which use numerical algorithms. Our approach, algorithm 

and program give a more fast execution and solving time than built-in 

Wolfram Mathematica symbolic functions and methods. 
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Numerical method for calculating electrical

power in a multiwire transmission line

Vladimir Paţiuc, Galina Rı̂bacova

Abstract

Transmission line equations are considered for a system con-
sisting of an arbitrary number of electrical conductors. The nu-
merical technique based on finite difference approximation is pro-
posed. First, the original system of differential equations is writ-
ten in Riemann invariants, and then the resulting equations are
approximated according to the finite difference method. In order
to obtain the final finite difference scheme with minimal nume-
rical dispersion and dissipation the method of first differential
approximation is applied. The novelty lies in obtaining a gene-
ralization to the case of an arbitrary number of conductors.

Keywords: transmission line equations, multiwire line, finite
difference method, Riemann invariants.

1 Introduction

Interest in the theory of multiple conductor (multiwire), parallel trans-
mission lines extends over the last years because of their numerous
applications. The term multiwire transmission line (MTL) typically
refers to a set of parallel conductors that serve to transmit electrical
signals between two or more points, for example, a source and a load.
With some exception, most of the published works has focused on the
theory of two parallel, mutually coupled transmission lines. The trans-
mission line equations for a system consisting of an arbitrary number
of conductors are derived in [1, 2], starting with Maxwell’s equations.

c©2017 by Vladimir Paţiuc, Galina Rı̂bacova
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Various methods for solving the transmission line equations for multi-
wire lines are examined in [2, 3]. The most commonly used numerical
techniques for such problems are the finite element method, the finite
difference time-domain (FDTD), or the transmission line matrix met-
hod [3]. Time-domain differential methods are becoming increasingly
popular among the electromagnetic community because of their versa-
tility and their ability to provide simulation results that are intuitively
meaningful to circuit designers and microwave engineers. In particular,
the FDTD technique offers a mathematically straightforward analysis
method, suitable for arbitrary electromagnetic geometries. However,
FDTD scheme [3] is sensitive to numerical dispersion and leads to
strong non-physical oscillations in numerical solutions in the cases of
short circuit and idling. The purpose of the present paper is to obtain
reasonably accurate numerical techniques for solving MTL equations
with minimal numerical dispersion and dissipation.

2 Mathematical model

Consider the propagation of electromagnetic energy through multiwire
three-phase high-voltage transmission line with arbitrary number of
conductors. The mathematical formulation of the problem represents
the system of partial differential equations known as transmission line
equations. The equations are derived from Maxwell equations and
for unknown voltage vector u(x, t) and current vector i (x, t) have the
following form

L
∂i

∂t
+

∂u

∂x
+Ri = 0 (1)

C
∂u

∂t
+

∂i

∂x
+Gu = 0 (2)

The domain of the solution of the problem (as well as the domain of
the definition for unknown vector functions of the current and voltage)
is the rectangle D = [(x, t) : x ∈ (0, l), t ∈ (0, Tmax)], where l is the
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length of the transmission line, Tmax is the maximal time of calculating
for u(x, t) and i(x, t). In an n-wire line the vector functions u(x, t) and
i (x, t) have n components each, but L, C , R, G in Eqs. (1) and (2)
are symmetrical matrices (n × n) of linear inductances, capacitances,
wire resistances and conductivities of insulation (vector objects are
marked in bold). So we have a system of hyperbolic partial differential
Eqs. (1) and (2). To obtain a unique solution, we must add to these
equations the initial (when t = 0) and boundary (when x = 0 and
x = l) conditions. We assume that at the initial time t = 0 there are
no voltages and currents in the line

u(x, 0) = i (x, t) = 0, x ∈ [0, l]. (3)

At the input of the line, at x = 0, voltages are given, and at the output
for x = l we have a load with resistance Rs

u(0, t) = U 0(t),u(l, t) = Rsi(l, t). (4)

After solving the formulated problem, the active power P is cal-
culated as the average value for the period T of instantaneous power
oscillations p(x, t) = u(x, t)i(x, t)

P (x, t) =
1

T

∫ t+T/2

t−T/2
u(x, τ)i(x, τ)dτ.

Reactive power in the line Q is calculated by the formula

Q(x, t) =
1

ωT

∫ t+T/2

t−T/2
u(x, τ)

di(x, τ)

dτ
dτ =

= −
1

ωT

∫ t+T/2

t−T/2
i(x, τ)

du(x, τ)

dτ
dτ.

3 Numerical method

In order to solve numerically the formulated problem we propose to ap-
ply the finite difference method as follows. To construct the difference
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scheme, we modify the initial system of Eqs. (1) and (2) and reduce
it to a diagonal form, using Riemann invariants. For the transformed
system, taking into account the initial and boundary conditions Eqs.
(3) and (4), we construct a difference scheme possessing the proper-
ties of approximation and stability, and, hence, the convergence. Then
using the method of the first differential approximation, we demon-
strate that constructed difference scheme has the minimum possible
values of dissipation and dispersion terms.

4 Conclusion

The mathematical formulation of the problem for a multiwire power
transmission line is studied. The finite difference scheme with minimal
values of dissipative and dispersion effects is constructed.
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Piecewise Linear Processes and Their

Applications in Finance

Nikita Ratanov

Abstract

We study a piecewise linear renewal process (with doubly
jump component), which successively follows independent pat-
terns of two alternating distributions. The financial market mo-
del based on this process is studied.

Keywords: renewal process, financial modelling, martingale.

1 Doubly stochastic piecewise linear process

Let ε(t) ∈ {0, 1}, t ≥ 0, be a two-state Markov process with the se-
quence of inter-switching times {Tm}m≥0. Consider the flow of swit-
ching instants T+,m = T0 + . . .+ Tm−1, m ≥ 1, T+,0 = 0. Let

M(t) = max{m ≥ 0 | T+,m ≤ t}, t > 0.

Let τm,n, m, n ≥ 0, be the sequence of independent exponentially
distributed, Exp(λm,n), random variables, λm,n > 0, and τ+,n

m = τm,0+

. . . + τm,n−1, n ≥ 1, τ+,0
m = 0. Let Nm(t), t ≥ 0, m ≥ 0, be the

sequence of (independent) Poisson processes, counting the arrivals of
τ+,n
m , n ≥ 0.

We define the double stochastic piecewise linear renewal process by

L(t) =

M(t)∑

m=1

lm−1(Tm) + lM(t)(t− T+,M(t)),

c©2017 by Nikita Ratanov
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where

lm(t) =

∫ t

0

cm,Nm(u)du =

Nm(t)∑

n=1

cm,n−1τm,n−1 + cm,Nm(t)(t− τ+,Nm(t)
m ).

Process L is supplied with two jump components, described

by the compound Poisson processes: r(t) =
∑M(t)−1

m=0
rm(Tm) +

rM(t)(t− T+,M(t)), accompanying each velocity change, where rm(t) =
∫ t

0
rm,Nm(u)dNm(u) =

∑Nm(t)
n=1

rm,n, and R(t) =
∑M(t)

m=1
Rm(Nm(Tm)),

accompanying the patterns’ switchings. Here cm,n are constants, Rm(n)
and rm,n are independent random variables, independent of the coun-
ting processes Nm and M .

We study the distribution of the sum

X(t) = L(t) + r(t) +R(t), t ≥ 0, (1)

assuming alternation of patterns,

λ2m,n = λi
n, λ2m+1,n = λ1−i

n ; c2m,n = cin, c2m+1,n = c1−i
n ;

R2m(n)
D
= Ri(n), R2m+1(n)

D
= R1−i(n); r2m,n

D
= rin, r2m+1,n

D
= r1−i

n ;

m ≥ 0, n ≥ 0, i ∈ {0, 1}.
(2)

2 Martingality

Let functions αi(t) and ai(t), t ≥ 0, be defined by

αi(t) :=
d

dt
E[L(t) + r(t) | ε(0) = i] =

∞∑

n=0

(cin + λi
nr

i
n)π

i(t;n) (3)

and

ai(t) = E[Ri(N(t)) | ε(0) = i] =
∞∑

n=0

Ri(n)πi(t;n), i ∈ {0, 1}. (4)
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Here rin = E[rin], Ri(n) = E[Ri(n)], are the expectations of the jump
amplitudes and πi(t;n) = P{Nm(t) = n | ε(0) = i}, i ∈ {0, 1}.
Assume that the series in (3)-(4) converge.

Theorem 2.1. • Let ai 6= 0,
αi(t)

ai(t)
< 0, ∀t > 0, and the integrals

∞∫

0

αi(t)

ai(t)
dt, i ∈ {0, 1}, diverge.

If the alternating distributions of Tm are defined by the survival
functions

Fi(t) = exp

(∫ t

0

αi(u)

ai(u)
du

)

, t ≥ 0, i ∈ {0, 1},

then X = X(t) is the martingale.

• Let Ri(n) ≡ 0 and cin/r
i
n < 0, ∀n, i ∈ {0, 1}.

If the velocity switchings occur with the intensities λi
n = −cin/r

i
n,

i ∈ {0, 1}, n ≥ 0, then X = X(t) is the martingale.

3 Market model

Let process X = X(t) be defined by (1) and condition (2) holds. As-
sume that the market follows two (alternating) patterns, 〈c0n, r

0
n, λ

0
n〉n≥0

and 〈c1n, r
1
n, λ

1
n〉n≥0, during the consecutive elapsed times Tm. The price

of risky asset S(t), t ≥ 0, is given by stochastic exponential of X,

S(t) = Et(X) = S0 exp(L(t))

M(t)∏

m=1

(1 +Rm(Nm(Tm)))×

N(t)∏

n=0

(1 + rm,n).

(5)
The dynamics defined by (5) generalises the well-studied jump-telegraph
model, [1, 2].

Model (5) can be interpreted as follows. Between time instants
T+,m market operates in a usual way. Further, at random times
T+,m, m ≥ 1, a strategic investor (or regulator) provokes a price
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impact (of the amplitude Rm(Nm(Tm))) accompanied by a pattern’s
switching. The amplitudes of jumps depend on the regulation policy
and on the historical behaviour of the current pattern. Such behavi-
our of the strategic investor can be interpreted as a price manipulation
strategy.

Note that if the regulator does not produce jumps of the asset
price, then the market is able to hedge all risks, that is, if Ri(n) ≡ 0
and cin + λi

nr
i
n = 0, n ≥ 0, i ∈ {0, 1}, then S(t) is the martingale, see

Theorem 2.1. Hence, the risk-neutral measure exists.
Let the prices jump on Ri(n) after regulation, and let the elapsed

times Tm, m ≥ 0, be exponentially distributed with alternating pa-
rameters µ0 and µ1. The market is still free of arbitrage, if the jump
amplitudes satisfy the inequality

µiRi(n) + cin

rin
< 0, n ≥ 0, i ∈ {0, 1}, (6)

see Theorem 2.1, and cf [2].
If inequality (6) does not hold, then the risk-neutral measures do not

exist. Such policy of the strategic investor could trigger the arbitrage.
Acknowledgments. I’m very grateful to the Faculty of Economics

of Rosario University for support of this research and of the opportunity
to participate in the Conference CMSM4’2017.
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The stability analysis of approximate schemes

for the plane fractional order diffusion equation

Ivan Secrieru

Abstract

The evolution equation of fractional order by the space vari-
ables is considered in this paper. This equation models the dif-
fusion factor in the process to transport any substance in some
medium. An approximate scheme to solve numerically this pro-
blem is constructed, using the decomposition principle.

Keywords: diffusion equation, equation of fractional order,
approximate scheme.

1 Introduction

The evolution equation simulates a lot of the problems that appear
in physique, ecologies, hydrogeology, finance etc. For example, in the
mathematical modeling of the problem to transport any substance in
atmosphere the main factors are the diffusion process, absorbtion of
substance and advection convection process. The classical model of
this evolution problem with one space variable uses the usual partial
derivatives of first and second order. In recent years many authors use
the fractional space derivative to modeling such process. In this article
it is considered the same problem with two space variables of the form

∂ϕ

∂t
−d+(x)

∂αϕ

∂+xα
−d−(x)

∂αϕ

∂−xα
−d+(y)

∂αϕ

∂+yα
−d−(y)

∂αϕ

∂−yα
= f(x, y, t),

ϕ(x, y, 0) = s(x, y), ϕ(x, y, t) = 0 on the ∂D, (1)

©2017 by Ivan Secrieru
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in the domain D = [0, a] × [0, b] with the boundary ∂D and the time
interval [0, T ], where 1 < α ≤ 2, 0 < x < a, 0 < y < b, 0 ≤ t ≤

T, d+(x) ≥ 0, d−(x) ≥ 0. The left-hand (+) and the right-hand (-)
fractional derivatives of order α in (1) are defined by Riemann-Liouville
formulas

∂αϕ

∂+xα
=

1

Γ(m− α)

∂m

∂xm

∫ x

0

ϕ(ξ, y, t)dξ

(x− ξ)α+1−m
,

∂αϕ

∂−xα
=

(−1)m

Γ(m− α)

∂m

∂xm

∫ a

x

ϕ(ξ, y, t)dξ

(ξ − x)α+1−m
, (2)

where m is a less integer such that m − 1 < α ≤ m. The analogous
formula holds for the fractional derivative by variable y.

2 The decomposition principle in construction

of the weighted approximate schemes

To construct an approximate scheme for (1) let τ be the time step,
tn = nτ and h is a space step of grid, xi = ih, yk = kh i, k = 0, 1, 2, . . . ,
M. Let ϕn

i,k be the numerical approximate value of ϕ(xi, yk, tn). Using
the notations

Ax = −d+(x)
∂αϕ

∂+xα
− d−(x)

∂αϕ

∂−xα
, Ay = −d+(y)

∂αϕ

∂+yα
− d−(y)

∂αϕ

∂−yα

(3)
the equation (1) can be written in the form

∂ϕ

∂t
+Axϕ+Ayϕ = f. (4)

The operators Ax, Ay are defined in the space of functions ϕ(x, y, t)
that satisfies the initial and boundary conditions of the problem (1)
and for any fixed value of t this function belongs to L2(D). Also we
consider that the operators Ax, Ay are positive defined and are dis-
cretized using the following Grunwald formula for the left-hand and
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right-hand fractional derivatives:

∂αϕ

∂+xα
=

1

hα

i+1∑

m=0

gmϕ(xi − (m− 1)h, yk, tn) + o(h)

∂αϕ

∂−xα
=

1

hα

M−i+1∑

m=0

gmϕ(xi+(m−1)h, yk, tn)+o(h), (5)

and the analogous formulas for the variable y, where

g0 = 1, gm = (−1)m
α(α − 1)...(α −m+ 1)

m!
, m = 1, 2, 3, . . .

We denote the corresponding operators defined by the right sides of
the equality (5) through Λ+

x and Λ−

x . For the variable y the analogous
operators are denoted by Λ+

y and Λ−

y using corresponding equality by
the variable y. Thus the operator Ax is approximated by Λx = Λ+

x +Λ−

x

and the operator Ay is approximated by Λy = Λ+
y + Λ−

y .

The approximation of the operators Λx,Λy by the variable t on
the interval [tn−1, tn+1] is defined as the weighted average with the
parameter r of each operator Λ+

x and Λ−

x at the time points tn−1 and
tn+1. Thus at the point tn the value of the operator Λxϕ is replaced by
the formula

Λn
xϕ =

d+i
hα

[rΛ+

x ϕ(tn−1) + (1− r)Λ+

x ϕ(tn+1)]

+
d−i
hα

[rΛ−

x ϕ(tn−1) + (1 − r)Λ−

x ϕ(tn+1)]. (6)

The operator Λyϕ is replaced by the analogous formula. The first
order time derivative is discretized using the central finite difference
formula. In the next formulas we use the notation ϕ(xi, yk, tn) = ϕn

i,k

and the inferior index will be omitted. According to the decomposition
principle, equation (4) with two space variables is approximated on the
interval tn−1 ≤ t ≤ tn+1 by a system of four equations. All equations

443



Ivan Secrieru

of this system has the similar form. We consider, for example, the first
equation on time interval [tn−1/2, tn−1]

ϕn− 1

2 − ϕn−1

τ
+ Λn

xϕ
n− 3

4 = 0. (7)

In detailed form this equation becomes

ϕ
n−1/2
i,j − ϕn−1

i,j

τ
=

d+i
hα

[r

i+1∑

k=0

gkϕ
n−1/2

i−k+1,j + (1− r)

i+1∑

k=0

gkϕ
n−1

i−k+1,j]

+
d−i
hα

[r

M−i+1∑

k=0

gkϕ
n−1/2

i+k−1,j + (1 − r)

M−i+1∑

k=0

gkϕ
n−1

i+k−1,j].

For the second and third equations of the system (7) the function f 6= 0

and is approximated by addition of the the sum rf
n−1/2
i,j + (1− r)fn−1

i,j

at the right side of the precedent equality. Through simple transfor-
mations we obtain

ϕ
n−1/2
i,j − (1− r)[ξi

i+1∑

k=0

gkϕ
n−1/2

i−k+1,j − ηi

M−i+1∑

k=0

gkϕ
n−1/2

i+k−1,j ] =

ϕn−1

i,j + r[ξi

i+1∑

k=0

gkϕ
n−1

i−k+1,j + ηi

M−i+1∑

k=0

gkϕ
n−1

i+k−1,j ] (8)

for i = 1, 2, . . . ,M − 1, n = 1, 2, . . . , N − 1, where

ξi =
τd+i
hα

, ηi =
τd−i
hα

.

Using the boundary conditions it is obtained the matrix form of (8)

[I − (1− r)A]Φn−1/2 = (I + rA)Φn−1, (9)

Φn−1/2 = [ϕ
n−1/2
1,j , ϕ

n−1/2
2,j , . . . , ϕ

n−1/2
M−1,j ]

′ and

Φn−1 = [ϕn−1

1,j , ϕn−1

2,j , . . . , ϕn−1

M−1,j ]
′
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and the elements of the matrix A = (ai,j), i, j = 1, 2, . . . ,M − 1 are
defined by following formulas:

ai,j =






(ξi + ηi)g1, j = i,
ξig2 + ηig0, j = i− 1,
ξig0 + ηig2, j = i+ 1,
ξigi−j+1. j < i− 1,
ηigj−i+1, j > i+ 1.






. (10)

For approximate scheme (7) the following theorem is true:

Theorem 1. The order of local error approximation of equation (7)

by the system (9) is O(τ +h) for 0 ≤ r < 1

2
and this order is O(τ2+h)

for the value of r = 1

2
.

3 Stability of the approximate scheme

In order to prove the stability of scheme (7) (in its matrix form (9))
we first remark that the coefficients ξi, ηi are non-negative. Also the
Grunwald coefficients gk satisfy the following properties

g1 = −α, gk ≥ 0(k > 1),
∞∑

k=0

gk = 0,
N∑

k=0,k 6=1

gk ≤ α, N = 1, 2, . . .

(11)
The stability of scheme (7) is considered in sense of recurrence. In
matrix form first equation of this scheme can be written in the form

Φn−1/2 = PΦn−1 : with P = [I − (1 − r)A]−1(I + rA),

and Φ0 is obtained from the initial condition of the problem.

Theorem 2. The approximate scheme (11) of the initial problem is

unconditionally stable for 0 ≤ r ≤ 1/2. If 1/2 < r ≤ 1, then the scheme

(7) is conditionally stable when

(ξ + η)α ≤
1

2r − 1

hα

τ
,
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where ξ = max(ξx, ξy) and ξx = max(d+(x)), η = max(d−(x))
on the interval [0, a], ξy = max(d+(y)), η = max(d−(y)) on

[0, b].

Proof. According to (10) we have for the diagonal elements of the
matrix A aii = (ξi + ηi)g1 = −(ξi + ηi)α. The sum of non-diagonal
elements of line i , denoted by Ri can be evaluated as follows

Ri =
M−1∑

k=1,k 6=i

Aik =
i∑

k=0,k 6=1

ξigk +
M−i∑

k=0,k 6=1

ηigk ≤ (ξi + ηi)α.

Using Gherschgorin theorem for every eigenvalue λ there exist Aii such
that

| λ−Aii |≤ Ri, |λ+ (ξi + ηi)α| ≤ (ξi + ηi)α.

From the last inequality the real parts of the eigenvalue of matrix A
are non-positive. The eigenvalue of matrix P is

λP =
1 + rλ

1− (1− r)λ
.

If 0 ≤ r ≤ 1/2 the inequality | λP |≤ 1 holds for any r, then the spectral
radius of the matrix P is not greater than 1, therefore ‖ P ‖≤ 1 and
the algorithm is stable. If 1/2 ≤ r ≤ 1, the inequality | λP |≤ 1 is
established under the condition (ξi + ηi)α ≤ 1

2r−1
. Hence, the scheme

(9) is conditionally stable under the restriction

(ξ + η)α ≤
1

2r − 1

hα

τ
.

The proof of stability for equations (2)-(4) of (7) is analogous.
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Fuzzy multicriterial optimizations in the

transportation problem

Alexandra Tkacenko

Abstract

In the paper an iterative fuzzy programming approach for sol-
ving the multi-objective transportation problem of ”bottleneck”
type with some imprecise data is developed. Minimizing the
worst upper bound to obtain an efficient solution which is close
to the best lower bound for each objective function iterative, we
find the set of efficient solutions for all time levels.

Keywords: fuzzy programming, fuzzy model, transportation
problem, efficient solution.

1 Introduction

It’s well known, the increasing of criteria number and imposing of mi-
nimal time for realizing the model solution leads only to increasing of
solution accuracy for optimal decision making problems. There are
many efficient algorithms that solve such models with deterministic
data [2]. Since in real life, some parameters are often of fuzzy type, in
the proposed work this case is studied.

2 Problem formulation

Because in any optimization model, objective function coefficients have
the largest share in the objective function variations, we shall consider

c©2017 by Alexandra Tkacenko
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these of fuzzy type and develop the next multi- criteria transportation
problem of ”bottleneck” type with fuzzy costs coefficients:

minZ1 =

m∑

i=1

n∑

j=1

c̃1ijxij minZ2 =

m∑

i=1

n∑

j=1

c̃2ijxij

........

minZr =

m∑

i=1

n∑

j=1

c̃rijxij minZr+1 = max
i,j

{ ti,j|xi,j > 0} (1)

n∑

j=1

xij = ai, ∀i = 1,m,

m∑

i=1

xij = bj , ∀j = 1, n,

m∑

i=1

ai =
n∑

j=1

bj, xij ≥ 0 for all i and j,

where : c̃kij , k = 1, 2 . . . r, i = 1, 2, . . . m, j = 1, 2, . . . n are costs or other
amounts of fuzzy type, tij – necessary unit transportation time from
source i to destination j, ai – disposal at source i, bj – requirement of
destination j, xij – amount transported from source i to destination j.

In the model there may exist the criteria of maximum too, which
however does not complicate it.

3 Theoretical analysis of fuzzy cost multi-

criteria transportation model

Since the parameters and coefficients of transportation multi-criteria
models have real practical significances such as unit prices, unit costs
and many other, all of them are interconnected with the same parame-
ter of variation, which can be calculated by applying various statistical
methods. We propose to calculate it using the following formula:

pkij =
ckij − ckij

c̄kij − ckij
, (2)
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where: ckij , c̄
k
ij – are the limit values of variation interval for each cost

coefficient ckij , where: i = 1,m, j = 1, n, k = 1, r.

Agreeing to the formula (2), the parameters {pkij} can be consi-
dered as the probabilistic parameters of belonging for every value of
coefficients {ckij} from their corresponding variation intervals.

The main idea of the method that follows, is the simultaneous and
interconnected variation of objective functions coefficients. This makes
it possible to reduce the model (1) to a set of deterministic models that
can be solved by applying the fuzzy techniques [1].

4 Some reasoning and algorithms

Seeing that the model (1) is of multi-criteria type, for its solving usu-
ally it builds a set of efficient solutions, known also as Pareto-optimal
solutions. Since solving model (1) involves its iterative reducing to
some deterministic we should propose firstly the following definitions.

Let us suppose that:
(
X̄, T̄

)
is one basic solution for the model

(1), where: T̄ =max
i,j

{t̄ij/x̄ij > 0} and X = {xij} , i = 1,m, j =

1, n is one basic solutions for the first r − criteria model (1).

Definition 1. The basic solution
(
X̄, T̄

)
of the model (1) is a basic

efficient one if and only if for any other basic solution (X,T ) 6=
(
X̄, T̄

)

for which exists at least one index j1 ∈ (1, ...r) for which the relation

Zj1 (X) ≤ Zj1

(
X̄
)
is true, there immediately exists another, at least,

one index ∃j2 ∈ (1, ....r), where j2 6= j1, for which at least, one of the

both relations Zj2

(
X̄
)
< Zj2 (X) or T̄ < T is true. If all of these three

inequalities are verified simultaneously with the equal sign, it means

that the solution is not unique.

Definition 2. The basic solution
(
X̄, T̄

)
of the model (1) is one

of the optimal (best) compromise solution for a certain time T̄ , if the
solution X̄ is located most closely to the optimal solutions of each cri-

terion.

In order to solve deterministic model (1) we can use the fuzzy

technique [1] and iteratively solve the deterministic model (3) for the
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best - Lk and the worst Ukvalues of k -criterion.
Max λ in the same availability conditions as in (1) and:

m∑

i=1

n∑

j=1

ckijxij + λ · (Uk − Lk) ≤ Uk, k = 1, r, (3)

By iterative applying the fuzzy technique for each increasing time
level, we could get the set of all its optimal compromise solutions.

5 Conclusion

By applying the hypothesis about the interconnection and similarly
variation of the model’s objective functions coefficients, we reduce the
model (1) to several models of deterministic type, each of which may
be solved using fuzzy technique.
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Finding the set of all Nash equilibria of a

polymatrix mixed-strategy game

Valeriu Ungureanu

Abstract

The method of intersection of best response mapping graphs
is applied to determine the Nash equilibrium set of a finite mixed-
strategy game. Results of a Wolfram language implementation of
the method are presented. Appeared issues are highlighted, too.

Keywords: noncooperative game, polymatrix game, mixed
strategy, Nash equilibrium set, best response mapping.

1 Introduction

The problem of all Nash equilibria finding in bimatrix game was consi-
dered earlier by Vorob’ev (1958) and Kuhn (1961), but as it is stressed
by different researchers (see e.g. Raghavan (2002)), these results have
only been of theoretical interest. They where rarely used practically
to compute Nash equilibria as well as the results of Mills (1960), Man-
gasarian (1964), Winkels (1979), Yanovskaya (1968), Howson (1972),
Eaves (1973), Mukhamediev (1978), Savani (2006), and Shokrollahi
(2017). The first practical algorithm for Nash equilibrium computing
was the algorithm proposed by Lemke and Howson (1964). Unfortuna-
tely, it doesn’t compute Nash equilibrium sets. There are algorithms
for polymatrix mixed strategy games too [4, 1].

Currently, the number of publications devoted to the problem of
finding the Nash equilibrium set is increasing, see, e.g., bibliography
surveys in [2, 3].
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In this work, we present the results of a Wolfram Language im-
plementation of the method of intersection of best response mapping
graphs in polymatrix mixed-strategy games.

2 Problem formulation

The Nash equilibrium set is determined as the intersection of best re-
sponse mapping graphs [4, 5]. This idea yields a natural method for
Nash equilibrium set computing in mixed extensions of two-player m×n

games and n-player m1 ×m2 × · · · ×mn games.
Consider a noncooperative finite strategic game:

Γ = 〈N, {Sp}p∈N , {ap
s
= aps1s2...sn}p∈N 〉,

where

• N = {1, 2, ..., n} ⊂ N is a set of players,

• Sp = {1, 2, . . . ,mp} ⊂ N is a set of (pure) strategies of the player
p ∈ N,

• #Sp = mp < +∞, p ∈ N,

• a
p
s = a

p
s1s2...sn : S → R is a player’s p ∈ N payoff function,

• S = ×
p∈N

Sp is the set of profiles.

A mixed extension of Γ or a mixed-strategy game Γ̃ is

Γ̃ = 〈Xp, fp(x), p ∈ N〉,

where

• fp(x) =

m1∑

s1=1

m2∑

s2=1

· · ·

mn∑

sn=1

aps1s2...snx
1

s1
x2s2 . . . x

n
sn

=

m1∑

s1=1

m2∑

s2=1

· · ·

mn∑

sn=1

ap
s

n∏

p=1

xpsp

is the payoff function of the pth player;

452



Finding the set of all Nash equilibria...

• x = (x1,x2, . . . ,xn) ∈ X = ×
p∈N

Xp ⊂ R
m is a global profile;

• m = m1 +m2 + · · ·+mn is the profile space dimension;

• Xp =

{

xp = (xp
1
, . . . , x

p
mp

) :
x
p
1
+ · · ·+ x

p
mp

= 1,
x
p
1
≥ 0, . . . , xpmp

≥ 0

}

is the set of

mixed strategies of the player p ∈ N.

The problem of finding all Nash equilibria in Γ̃ is considered.

3 Best response mapping graphs intersection

Consider the n-player mixed strategy game Γ̃ = 〈Xp, fp(x), p ∈ N〉.
The payoff function of the player p is linear if the strategies of the
others are fixed, i.e. the player p has to solve a linear parametric
problem

fp
(
xp,x−p

)
→ max, xp ∈ Xp, p = 1, . . . , n,

with the parameter vector x−p ∈ X−p.

Theorem 3.1. The set of Nash equilibria in polymatrix mixed-strategy

game is equal to

NES(Γ̃) =
⋃

i1∈U1, I1∈P(U1\{i1})
...

in∈Un, In∈P(Un\{in})

X (i1I1 . . . inIn) .

The proof of the theorem has a constructive nature. It permits to
develop on its basis both a general method for Nash equilibrium set
computing, and different algorithms based on the method.

The components X (i1I1 . . . inIn) are solution sets of systems of
multi-linear simultaneous equations. Their solving needs special con-
ceptual and methodological approaches both from the perspectives of
multi-linear algebra and algorithmic theory.
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The Wolfram Programming Language, which has a symbolic nature
by its origin, is a valuable practical tool for the set of Nash equilibria
computing and representation.

4 Conclusion

The symbolic and numerical strength of the Mathematica System and
the Wolfram Language permits to construct a package oriented on fin-
ding the set of all Nash equilibria in polymatrix mixed-strategy games.
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On the control of a nonlinear beam

Kenan Yildirim

Abstract

In this paper, optimal vibration control of a nonlinear beam
is investigated by means of maximum principle.

Keywords: Nonlinear Beam, Optimal Control, Vibration,
Maximum Principle.

1 Mathematical Formulation of the Problem

In this study, we consider the nonlinear partial differential equation[2]

wtt + κ1wxxxx + κ2wtxxxx + [g(wxx)]xx = f(x, t), (1)

where w is the transversal displacement, x ∈ (0, ℓ) is the space variable,
ℓ is the length of the beam, t ∈ (0, tf ) is the time variable, tf is the
terminal time, κ1 > 0 and κ2 > 0 are constants, g(w) = O(w1+θ) is the
nonlinear term and θ is a positive integer, f is the control function to
be determined optimally. Eq.(1) is subject to the following boundary
conditions,

w(0, t) = 0, w(ℓ, t) = 0, wx(0, t) = 0, wx(ℓ, t) = 0 (2)

also following initial conditions;

w(x, 0) = w0(x) ∈ H2

0
(0, ℓ), wt(x, 0) = w1(x) ∈ L2(0, ℓ). (3)

In [2], a weak solution, which is global, for Eq.(1) is presented under
some assumptions on the nonlinear term.
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2 Optimal Control Problem and Maximum

Principle

The aim of the optimal control problem is to determine an optimum
function f(x, t) to minimize the performance index functional of the
beam at tf with the minimum expenditure of the control. Therefore,
performance index functional is defined by the weighted dynamic re-
sponse of the beam and the expenditure of the control over (0, tf ) as
follows;

J (f(x, t)) =

ℓ∫

0

[µ1w
2(x, tf ) + µ2w

2

t (x, tf )]dx+

tf∫

0

ℓ∫

0

µ3f
2(x, t)dxdt, (4)

where µ1, µ2 ≥ 0, µ1 + µ2 6= 0 and µ3 > 0 are weighting con-
stants. The first integral in Eq.(4) is the modified dynamic response
of the beam and the last integral represents the measure of the total
control expense that accumulates over (0, tf ). The optimal control of a
nonlinear beam is expressed as

J (f◦(x, t)) = min
f∈L2(0,tf :V ∗)

J (f(x, t)) (5)

subject to the Eqs.(1)-(3). In order to achieve the maximum princi-
ple, let us introduce an adjoint variable ν(x, t) satisfying the following
equation

νtt + κ1νxxxx − κ2νtxxxx = 0 (6)

and subjects to the following boundary conditions

ν(x, t) = νx(x, t) = 0 at x = 0, ℓ (7)

and terminal conditions at t = tf

νt(x, t)− κ2νxxxx(x, t) = −2µ1w(x, t), ν(x, t) = 2µ2wt(x, t). (8)
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A maximum principle in terms of Hamiltonian functional is derived as a
necessary condition for the optimal control function. It is proved in [1]
that under some convexity assumptions, which are satisfied by Eq.(4),
on performance index function, maximum principle is also the suffi-
cient condition for the optimal control function. Then, the maximum
principle can be given as follows:

Theorem 1. (Maximum principle) The maximization problem states

that if

H[t; ν◦, f◦(x, t)] = max
f∈L2(0,tf :V

∗)

H[t; ν, f(x, t)] (9)

in which ν = ν(x, t) satisfies the adjoint system given by Eqs.(6)-(8)
and the Hamiltonian function is defined by

H[t; ν, f(x, t)] = −νf(x, t)− µ3f
2(x, t) + ν[g(wxx)]xx, (10)

then

J [f◦(x, t)] ≤ J [f(x, t)], (11)

where f◦(x, t) is the optimal control function.

Proof. By taking the first variation of the H, control function is obtai-
ned optimally as follows;

f(x, t) =
−ν(x, t)

2µ3

. (12)

3 Conclusion

In this study, optimal control of a nonlinear beam is studied and opti-
mal control function is analytically obtained by means of a maximum
principle without linearization of the nonlinear term in the equation of
motion.
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Algebraic Laws of Timed Mobile Processes

Bogdan Aman, Gabriel Ciobanu

Abstract

We consider an abstract view of the processes interacting
in complex distributed systems, and emphasize the behavioural
equivalences between migrating processes with timing constraints
and local communication.

Keywords: concurrent processes, distributed systems, timed
mobility, behavioural equivalence.

1 Introduction

The general framework is given by a set P of processes (ranged over
by P , Q, . . . ) by using infinite sets of variables and interacting chan-
nel names. Over this set we can define the operation | of commu-
nication/synchronization between processes as P | Q. The structure
(P, | , 0) is a commutative monoid. Over this structure there are de-
fined various equivalences, and so to reduce the space by factorization.

Process calculi represent formalisms used to model distributed and
concurrent systems by using labelled transition systems. They allow
a high-level description of the concurrent processes and definition of
several behavioural equivalences between processes as a step towards
some automated tools for the verification of interaction (communica-
tion and synchronization) between processes. During the past couple
of decades, a number of calculi supporting process mobility were de-
fined and studied, for instance the π-calculus [5]. Various features were
introduced to obtain specific formalisms able to describe explicit loca-
tions (in distributed π-calculus [4]), explicit migration and timers (in

c©2017 by Bogdan Aman, Gabriel Ciobanu
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timed distributed π-calculus [2] and timed mobile ambients [1]). Dis-
crete time is a key ingredient in some of these formalisms.

In these calculi, the verification techniques are based on two ma-
jor tools: temporal logics and behavioural relations. Temporal logics
are used to specify the properties that systems have to satisfy, while
equivalence relations are used as appropriate abstractions for reduction
of state spaces. The relationships between these two tools have been
established in [3]. A wide spectrum of observational equivalences can
be logically characterized in terms of Hennessy-Milner modal logics.

If an equivalence relation on states consistent with system be-
haviour is provided prior to exploration of a state space, then a con-
densed state space can be constructed on-the-fly in which the nodes
represent equivalence classes of states. The nodes in a condensed state
space are often represented by computing a canonical representative for
the corresponds equivalence class. Equivalence checking plays a crucial
role in automatic verification of safety properties in concurrent sys-
tems. In this paper we study various behavioural equivalences taking
into account both timers and locations (for migration).

2 Syntax and Semantics of TiMo

The syntax of TiMo is given below.

Processes P ::= a∆lt!〈v〉 then P else P ′ p (output)

a∆lt?(u) then P else P ′ p (input)

go∆lt l then P else P ′ p (move)

P | P ′ p (parallel)
0 p (termination)

id(v) p (recursion)

sP (stalling)

Located processes L ::= l[[P ]]

Networks N ::= L p L | N
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As usual, we consider processes up to a structural congruence com-
prising the commutative monoid laws for | and 0. Intuitively, a process
a∆lt!〈v〉 then P else P ′ attempts to send a tuple of values v over channel
a for lt time units. If successful, it continues as process P ; otherwise it
continues as process P ′. Similarly, a∆lt?(u) then P else P ′ is a process
that attempts for lt time units to input a tuple of values and substitute
them for the variables u. Mobility is implemented by a process go∆ltl
then P else P ′ which moves from the current location to the location
given by l after lt time units. Since l can be a variable, its value can be
assigned dynamically through the communication with other processes,
migration actions support a flexible scheme for the movement of pro-
cesses from one location to another. Processes are further constructed
from the (terminated) process 0 and parallel composition P | P ′. A
located process l[[P ]] specifies a process P running at location l, and
a network is composed out of its components N | N ′. A network N
is well-formed if the following hold: there are no free variables in N ,
and there are no occurrences of the special symbol s in N . The set of
processes is denoted by P, the set of located processes by L, and the
set of networks by N .

3 Timed Bisimulation in TiMo

In what follows, we define various equivalences for processes and net-
works by considering their temporal behaviour.

Definition 1. Let R ⊆ N ×N be a binary relation.

1. R is a strong timed simulation (ST simulation) if

(N1, N2) ∈ R ∧ N1
λ
−→ N ′

1 =⇒ ∃N ′

2 ∈ N : N2
λ
−→ N ′

2 ∧ (N ′

1, N
′

2) ∈ R .

2. R is a strong timed bisimulation (ST bisimulation) if both R and

R−1 are strong timed simulations.

3. The strong timed bisimilarity is the union ∼ of all ST bisimula-

tions.
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Essentially, the above definition treats timed transitions just as any
other transitions. It is easy to check that ∼ is an equivalence relation.
From the point of view of the evolutionary behaviour of TiMo net-
works, a crucial result is that strong timed bisimulation can be used to
compare the complete computational steps of two systems.

Theorem 1. Let N1, N2 be two networks such that N1 ∼ N2. If

N1
Λ@l
==⇒ N ′

1 then there exists N ′

2 ∈ N s.t. N2
Λ@l
==⇒ N ′

2 and N ′

1 ∼ N ′

2 .

Conclusion. In this paper we studied the abstract behavioural equiv-
alences between migrating process in distributed systems in terms of
local timers and locations.
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Images processing tools for data 

measurements from interferograms 

Vsevolod Arnaut, Ion Andrieş 

Abstract 

The imaging interferometry analyzing methods based on 

software processing of interferograms possess unique potential 

capabilities in domain of precise measurements. This paper 

presents description of software tools designed for processing 

interferograms obtained by imaging interferometric microscopy 

methods in order to retrieve transverse and longitudinal linear 

dimensions and optical properties of objects. 

Keywords: optical measurements, interferogram processing, 

linear dimensions, optical properties, software tools. 

1 Introduction 

The interferograms are obtained by optical equipments with embedded 

CCD digital camera and in general case are either optical images of the 

measured objects with an interference raster superimposed on them, or 

they are holograms obtained by recording the phase distribution carrying 

information on the linear dimensions and optical properties of objects. To 

fully realize the unique capabilities of imaging interferometric microscopy 

methods in precise and detailed characterization of functional nanometric 

materials strict mathematical methods, algorithms and software tools are 

necessary. 

This paper presents the description of two software graphical tools. 

The first of them is designed for interferograms processing in order to 

retrieve the measurement data of thickness and optical parameters of thin 

nanometric functional films commonly used in photonics. Interferograms 

are obtained by conventional microinterferometer MII-4 equipped with a 

digital camera. The second tool simulates the measurements of linear 
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dimensions by processing of objects images overlaid with an 

interferometric raster with known period d. Images are obtained by a 

special holographic setup. 

2 Used technologies 

The mentioned above two kinds of measurements which can be performed 

are axial measurements and lateral measurements (measurements of 

longitudinal and transverse dimensions in relation to the direction of the 

light beam propagation). 

Graphical data for axial measurements are obtained from 

interferometric microscope MII-4 equipped by digital camera. The optical 

scheme of this microinterferometer is a combination of Michelson 

interferometer and the microscope (Figure 1). 

Fig. 1. Microinterferometer optical scheme. 

Graphical data represent images of interferograms (Figure 2) obtained 

from interferometer as a result of direct and reflected beams interference. 

Because of the thin film cut edge presence (Figure 3), two shifted pictures 

of interference (Figure 2) are obtained. Measurements performed on the 

base of images are thickness of opaque thin films, thickness of transparent 

thin films, refractive index of transparent films. The calculations depends 

on parameter b representing the distance between near fringes and of 

parameter c representing the distance between the fringe and the 

corresponding shifted one (Figure 2). 
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Images processing tools for data measurements 

Fig. 2. Examples of interferograms. 

Graphical data for lateral measurements also represent interferograms 

(Figure 4). 

Fig. 3. Cases of opac and transparent films. 

3 Graphical tools 

Based on the described above algorithms there were developed tools 

oriented to processing images for retrieval the values of dimensional and 

optical parameters. 

Software tool possesses the following functional possibilities: 

• measurement of opaque thin films thickness up to 20-30 nm with a

resolution of ~ 5 nm;
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Fig. 4. Algorithm for calculation object size. 

• measurement of opaque film thickness with thickness of several

wavelengths;

• measurement of transparent film thickness for a given refractive

index;

• measurement of refractive index of transparent films at a certain

thickness obtained by other measurement methods;

• statistical processing of the measurement results and their storage in

a database;

• measurement of objects linear sizes.

4 Conclusion 

Compared with conventional layer thickness measuring devices such as 

profilometers or scanning force microscopes (AFM), this technique 

provides the full view field of analyzing specimens, is more rapid, 

noncontact, and does not require complicated specimen preparation. 

Digital processing of interferograms enables to measure the thickness up 

to 20 nm with a resolution of ~ 5 nm. 
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Virtualized Infrastructure for Integration

Heterogeneous Resources

Petru Bogatencov, Nichita Degteariov, Nicolai Iliuha,

Grigorii Horos

Abstract

In the paper there are described directions of distributed
and high performance computing (HPC) technologies integration.
Analysis of trends in the development of computer technologies,
which focused on creating conditions for solving complex pro-
blems with high demands of computing resources is presented.
The result of these studies is the following conclusion: the main
development directions focused on integration of distributed Grid
and parallel HPC facilities on the base of virtualization paradigm
within integrated Cloud infrastructure in order to expand the
range of opportunities for end-users by providing heterogeneous
computing resources. Perspectives of utilization of Cloud techno-
logies for integration of Grid and HPC clusters in heterogeneous
computer infrastructures that are offering effective resources and
end-user interfaces are considered.

Keywords: distributed computing technology, Cloud com-
puting, High Performance Computing, computational clusters.

1 Introduction

In the past years, development of distributed and high-performance
computing (HPC) technologies for solving complex tasks with specific
demands of computing resources are actively developed, including in
Moldova [1]. New areas of works in this direction focused on integration
of Grid, HPC and Cloud infrastructures and gain benefit to end users

c©2017 by Petru Bogatencov, et al.
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from uniting computational resources of Grid and HPC clusters with
effective users interfaces and infrastructure management tools offered
by Cloud.

2 Approaches of Heterogeneous Federated In-

frastructure realization

These developments are using results of previous projects like the re-
gional project Experimental Deployment of an Integrated Grid and
Cloud Enabled Environment in BSEC Countries on the Base of gEclipse
(BSEC gEclipseGrid) supported by Black Sea Economic Cooperation
Programme (http://www.blacksea-Cloud.net). For this project we se-
lected middleware implementing computing architecture that provides
a collaborative, network based model that enables sharing of compu-
ting resources: data, applications, storage and computing cycles. The
project allowed introducing the general idea of federated Cloud infra-
structure, which can offer different solutions for universities, scientific
and research communities [2]. The project was focused on implemen-
tation approaches to combine the Grid and Cloud resources together
as a single enhanced computational power and offers the possibility to
use Grid or Cloud resources on demand. As an example, if the user
requires parallel computational resources, his jobs submit on the Grid,
but if the user needs any specific software or environment to solve some
special problem, he can use a dedicated Cloud service or virtual image
for that purpose. Fig. 1 shows the skeleton of the suggested plat-
form. The proposed platform made it possible to solve the following
problems:
— increasing the effective usage of computational resources;
— providing additional services on demand for scientific and research
communities;
— close collaboration between different resources providers.
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Figure 1. General structure of the proposed heterogeneous regional
platform.

3 Integration of Cloud and HPC/GRID re-

sources using OpenStack

Future researches in creation of integrated heterogeneous distributed
computing infrastructure were continued within regional project VI-
SEEM (VRE for regional Interdisciplinary communities in Southeast
Europe and the Eastern Mediterranean) [3]. During preparations for
this new project the works were effectuated to unite in one regional
infrastructure various distributed computing resources like Grid, HPC,
storage and computing Cloud. This is the advantageous step forward,
because it will bring us elasticity in resources management, simplify
administration and give researchers ability to solve a huge range of
computational and visualization problems from small to big complexity
in a unified elastic infrastructure. If user needs some kind of general-
purpose software or smaller computer resources, that does not require
high parallelism; he can use one of available Cloud images. Deployed
infrastructure supports almost every mainstream Linux distributions
(CentOS, Scientific Linux, Ubuntu, Debian, Fedora, etc.). If he needs
more computing cores with more parallelism, he can easily provision
a cluster of HPC nodes through OpenStack GUI and add additional
nodes if he wants. The main problem is that Cloud and HPC have
different principles of resources allocation. In Cloud we run virtual
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machines but HPC bases on Bare Metal servers (nodes) combined into
computing cluster. The approach of provisioning HPC nodes inside
virtual machines in OpenStack seems to be the solution, but there are
some problems. As high performance is the major constituent of High-
Performance Computing, running HPC on virtual machines is not the
best solution, because virtualization causes performance drop itself. To
achieve better results we must run our HPC nodes on Bare Metal ser-
vers. The solution had been found in an OpenStack component called
”Ironic”. It is an OpenStack development, which provisions bare metal
(as opposed to virtual) machines. It may be used independently or as
part of an OpenStack Cloud, and integrates with the OpenStack Iden-
tity (keystone), Compute (nova), Network (neutron), Image (glance)
and Object (swift) services. When the Bare Metal service is appropri-
ately configured with the Compute and Network services, it is possible
to provide both virtual and physical machines through the Compute
services API [4]. To achieve the initial idea and ensure heterogene-
ous resources management for HPC, Grid and storage access on the
Cloud we re-deployed our RENAM Scientific Cloud (RSC) infrastruc-
ture by using OpenStack 13.1.1 Mitaka middleware. Now it consists
of one controller node running on VM and three computing nodes (2
for Virtual Machines provisioning and 1 for Bare Metal provisioning).
It has in total 24 CPU cores, 48GB of RAM and 2 TB HDD storage
and two 1Gbit networks – one for public access and the other for high-
throughput interconnectivity between VMs. In RSC digital certificate
TERENA SSL CA 3 is installed. Access to RSC resources is provided
via https://cloud.renam.md.

4 Federated IdM to access integrated compu-

ting infrastructures

To ensure operation of federated mechanism to access distributed com-
puting resources, there were finalized works to realize solutions that
allow providing unified access to Cloud infrastructures and be inte-
grated in the creating Research & Educational identity management
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federations operated within eduGAIN inter-federation authorization &
authentication mechanism. The practical results in the area of im-
plementation of federated access to Cloud are based on realization of
EGI-Inspire AAI Cloud Pilot project Federated Authentication and
Authorization Infrastructure (AAI) for services of Research and Edu-
cational Networks and other new results obtained during deployment
and administration of OpenStack Cloud infrastructure [5].

5 Conclusion

Cloud technologies are spreading amazingly fast and already took the
lead in many domains of IT application – Science, Medicine, etc. They
still penetrating in new niches – every year more and more supercom-
puters in the top lists are being powered by OpenStack, rather than
traditional HPC approach. The reason is in its flexibility and diver-
sity, combined with ”modular design”. It has a couple of basic core
components and a variety of optional (additional) ones, which are used
for creating infrastructure of any grade of complexity, heterogeneous
ones that can combine virtual machines and bare metal nodes, making
it more and more attractive to HPC and GRID users. Our combined
HPC and Cloud RSC infrastructure proved its functionality and reli-
ability; anyway, it cannot be considered as a production-ready, as it
does not provide necessary High-Availability backup and redundancy
yet. In addition, it cannot boast of huge performance, it is more about
proof-of-concept. However, it is a very good playground for studying
Cloud and HPC computing, and for training IT specialists and resear-
chers to work on HPC, Grid and Cloud clusters
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On the Bisector of a Pair of Strings

Ivan Budanaev

Abstract

In this paper we present the construction algorithm of all
points of the bisector of a pair of strings. We consider the Le-
venshtein and Hamming distances on the space of strings.

Keywords: Metric, Levenshtein distance, Hamming dis-
tance, strings, bisector, optimal parallel decompositions.

1 Introduction

Let A be an alphabet and let L(A) be the set of all finite strings
a1a2 . . . an with a1, a2, . . . an−1, an ∈ A. Let ε be the empty string.
Consider the strings a1a2 . . . an for which ai = ε for some i ≤ n, and
denote by L∗(A) all strings of this form. It is obvious that L(A) ⊂

L∗(A). If ai 6= ε, for any i ≤ n or n = 1 and a1 = ε, the string
a1a2 . . . an is called a canonical string. The set

supp(a1a2 . . . an) = {a1, a2, . . . , an} ∩ A

is the support of the string a1a2 . . . an.
For the string a = a1a2 . . . an we consider the proper length l∗(a) =

n, and the length l(a) = |{i : ai 6= ε}|. For two strings a1 . . . an and
b1 . . . bm, their product (concatenation) is a1 . . . anb1 . . . bm.

If n ≥ 2, i < n, and ai = ε, then the strings a1 . . . an and
a1 . . . ai−1ai+1 . . . an are considered equivalent. In this case any string
is equivalent to one unique canonical string. Two strings a and b are
called equivalent, denoted a ∼ b, if a and b are equivalent to the same
canonical string. In this case, L(A) becomes a monoid with identity ε,
whereas L∗(A) is a semigroup.

Our aim is to study the bisector problem in the space of strings.

c©2017 by Ivan Budanaev
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2 Parallel decompositions

Fix an alphabet A and Ā=A ∪ {ε}. Consider on Ā the discrete metric
ρ, where ρ(a, b) = 1 for all distinct a, b ∈ Ā. Define on L∗(A) the gene-
ralized Hamming distance ρH : if a = a1a2 . . . an and b = b1b2 . . . bm,
then

ρH = Σ{ρ(ai, bi) : i ≤ min{n,m}}+ |n−m|.

Now let ρ∗(a, b) = inf{ρH(a′, b′) : a′ ∼ a, b′ ∼ b}. In [1] the following
assertions were proved:

1. ρ∗(a, b) = min{ρH(a′, b′) : a′ ∼ a, b′ ∼ b, l∗(a′) = l∗(b′)}.
2. ρ∗ is the Levenshtein metric on L(A).
3. ρ∗ is a pseudo-metric on L∗(A) with the properties:

• ρ∗(a, b) = 0 ⇐⇒ a ∼ b

• ρ∗(a, b) = ρ∗(b, a)
• ρ∗(a, c) ≤ ρ∗(a, b) + ρ∗(b, c)

• ρ∗(ac, bc) = ρ∗(ca, cb) = ρ∗(a, b).

Definition 1. Let a, b ∈ L(A). The pair a′, b′ ∈ L∗(A) is called:

• parallel decompositions of a, b if l∗(a′) = l∗(b′), a′ ∼ a, b′ ∼ b;
• optimal parallel decompositions of a, b if l∗(a′) = l∗(b′), a′ ∼ a,

b′ ∼ b, and ρ∗(a, b) = ρH(a′, b′).

In [1] it was proved that the optimal parallel decompositions of a, b
may beof form a′ = v1u1v2u2 · · · vkukvn+1, b

′ = w1u1w2u2 · · ·wkukwn+1,
where l∗(vi) = l∗(wi) for any i ≤ n. In the case of optimal parallel de-
compositions we have

ρ∗(a, b) = ρ∗(a′, b′) = Σ{ρH(vi, wi) : i ≤ n+ 1}.

3 Main Result

The set B(a, b) = {x ∈ L(A) : ρ∗(a, x) = ρ∗(b, x)} is called the bisector
of strings a, b ∈ L(A). Let B∗(a, b) = {x ∈ L∗(A) : ρ∗(a, x) = ρ∗(b, x)}.
Our aim is to construct equivalent representations of the strings from
B(a, b) with respect to the optimal parallel decompositions of a and b.
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Theorem 1. Any optimal parallel decompositions a′, b′ of two strings

a, b generate elements c ∈ B∗(a, b).

Proof. We present a proof by construction. Let a′ = v1u1 · · · vnunvn+1

and b′ = w1u1w2u2 · · ·wnunwn+1 be the optimal parallel decompositi-
ons of the strings a and b. We divide the construction process of c into
three steps:

Step 1. In the first part of the algorithm we analyze subsequences of
type v,w (we drop the index i to simplify notation) of strings a′, b′, and
generate subsequences x of c equidistant to v and w. Assume that v =
y1y2 . . . yl and w = z1z2 . . . zl, where yi 6= zi and l is the proper length
of v and w. To construct a string x such that ρ∗(x, v) = ρ∗(x,w) = l−k
we let x = x1x2 . . . xl, where:

1. xi = yi, i ∈ Iy = {1 ≤ j1 < j2 < . . . < jk ≤ l}, or

2. xi = zi, i ∈ Iz = {1 ≤ j1 < j2 < . . . < jk ≤ l} and i /∈ Iy,or

3. xi ∈ Ā \ {yi, zi}, 1 ≤ i ≤ l, i /∈ Iy and i /∈ Iz.

It is not difficult to compute the cardinal of the set of generated x:

|B∗

v | = Σ
(
l
k

)(
l−k
k

)
(|Ā| − 2)l−2k, where 0 ≤ k ≤

[
l/2

]
.

Step 2. In this part of the construction process we analyze the subse-
quences of type u. Assume that u = t1t2 . . . tl. To construct a string x
such that ρ∗(x, u) = l− k with 0 ≤ k ≤ l, we let x = x1x2 . . . xl, where:

1. xi = ti, i ∈ It = {1 ≤ j1 < j2 < . . . < jk ≤ l}, or

2. xi ∈ Ā \ {ti}, 1 ≤ i ≤ l, and i /∈ It.

The cardinal of the set of generated x by the above method is :

|B∗

u| =
∑l

k=0

(
l
k

)
(|Ā| − 1)l−k = |Ā|l.

The above computation shows that all strings of length l on alphabet Ā
participate in the construction of bisectors of length l of two identical
strings of length l. We now proceed to the last step of the algorithm.

Step 3. Once generating all elements of B∗

v and B∗

u is complete, the bi-
sector elements of c′ ∈ B∗(a′, b′), are of form c′ = v′

1
u′
1
v′
2
u′
2
· · · v′nu

′

nv
′

n+1
,

where v′i ∈ B∗

v and u′ ∈ B∗

u. If we denote L = {l : l = l∗(vi), 1 ≤ i ≤
n+ 1}, then the cardinal of set B∗(a′, b′) is given by the formula:
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|B∗(a′, b′)| = |Ā|l
∗

(a)−ρ∗(a′,b′)
∏

l∈L

∑[l/2]

k=0

(
l
k

)(
l−k
k

)
(|Ā| − 2)l−2k.

This completes the proof of the theorem. �

4 Conclusion

An analysis of the proof of the Theorem 1 allows for the following
formulations:

1. Algorithm from Thereom 1 constructs all c′ ∈ B∗(a′, b′), such
that ρ∗(a′, b′)/2 ≤ ρ∗(a′, c′) = ρ∗(c′, b′) ≤ ρ∗(a′, b′). The minima-
lity condition of ρ∗(a′, b′)/2 is proven by the triangle inequality.

2. Algorithm from Thereom 1 can be extended to generate c′ ∈
B∗(a′, b′), such that ρ∗(a′, b′)/2 ≤ ρ∗(a′, c′) = ρ∗(c′, b′).

3. Elements c ∈ B∗(a, b) can be generated by taking the canonical
representations of c′ ∈ B∗(a′, b′).

4. One can prove that any element c ∈ B∗(a, b) can be constructed
using the proposed algorithm.

The presented algorithm can be used as a new technique to solve
the problem of finding the center of a set of strings.
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User Interface to Access Old 

Romanian Documents 

Tudor Bumbu, Svetlana Cojocaru, Alexandru Colesnicov, 

Ludmila Malahov, Ștefan Ungur 

Abstract 

A utility and its interface are described that helps the user to 

select proper OCR patterns to process Romanian Cyrillic Printings 

of the 17
th

 century. The utility is included in the tool pack for OCR 

of the Romanian heritage printed in the Cyrillic script. 

Keywords: digitization, optical character recognition, the 

Romanian  language, Cyrillic fonts, decision utility. 

1 Introduction 

The problem of choosing the best suitable optical character recognition 

patterns for a 17
th
 century printed text represents a part of a high priority 

in the OCR process [1].  

The main goal was to develop a classification algorithm of the 17
th
 

century Romanian Cyrillic printings, and implement it in a software 

utility. The application goes as an extension to the previously developed 

Tool Pack for digitization and transliteration of the Romanian cultural 

heritage. The classification algorithm consists of a set of decision rules 

which are based on the particularities of the typography (printing press) 

and the geographical region in which the text was printed. 

2 Algorithm 

The 17
th
 century printing press used many different fonts for books and 

documents printing. They can be divided in two groups that are very 

distinct both in style and character usage. We have to mention that in that 

period the printed text structure is very close to the handwritten text 

structure. Fig. 1 shows two pages from two different books printed in the 

17
th
 century using distinct fonts. 
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Figure 1. Two pages printed using different fonts; the most distinct letters 

are demonstrated below the text. 

It is obvious that these two texts have different styles in addition to 

the fact that there are two different-shaped characters for the same letter 

“t” and “z”. The “t” character from the first text is printed as standard “т”, 

but in the second text the handwritten form of the same letter is used, 

namely “m”. The same is true for the “z” letter, as it is clear that the 

writing style differs significantly. 

Both images represent a scanned Romanian text of the 17th century. 

Nevertheless, if we use the user recognition patterns trained for the first 

image, OCR of the second image will result in a very high error level, 

making the resulting text unintelligible and useless. The only suitable 

solution for this problem is to create another recognition pattern set, 

trained especially for the second font. 

In order to successfully apply the OCR pattern set for these images, a 

software tool is needed through which the user could choose the most 

suitable patterns for his scanned book or document. We will focus only on 

17
th
 century books and documents printed in Romanian Cyrillic Script. 

The decision-making process is described in the following diagram, which 

allows a better comprehension of the classification algorithm. 
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Figure 2. Diagram showing the pattern set classification used at optical 

character recognition. 

The diagram on Fig. 2 shows how the user selects the best recognition 

pattern set for his document, judging by the historical period, region and 

typography. As it was previously said, we’ll focus only on the 17
th
 century 

Romanian printings. First of all, the user selects the historical period of 

the scanned text, which in our example is 17
th
 century. Then user selects 

the geographical location (region) of the Romanian text, which can be one 

of the following: Iași, București, Târgoviște, Belgrad (Alba Iulia), 

Uniev (Cernăuți), Sas Sebeș, Snagov, or Buzău. 

The last step is selection of the most appropriate printing press 

(typography) in the region, which, for example, in Iași can be one of the 

following: 

1. Tiparul cel Domnesc;

2. Casa Sfintei Mitropolii;

3. Tiparnița Tărâi.

In București there were the following typographies: 

1. Scaunul Mitropoliii Bucureștenilor;

2. Tipografia Domnească;

Belgrad had the following typographyies: 

1. Tipografia Domnească;

2. Mitropolia Belgradului;

The most significant typographies in other regions were: 

 Târgoviște – Sfânta Mitropolie a Târgoviştii;

 Uniev – Sfînta Mănăstire Uniev;

 Sas Sebeș – Tipografia Noao;

 Snagov – Tipografiia Domnească în Sfânta Mănăstire în Snagov;

 Buzău – Tipografiia Domnească, la Episcupiia dela Buzău;
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The books and documents printed at these typographies can be OCR-

ed using one of the two recognition pattern sets trained previously. 

Therefore, after the printing press is selected, FineReader will run with the 

best suitable training set already selected for the user’s scanned text. 

The utility implementing model selection is written in Java core and 

requires JRE (Java Runtime Environment) and ABBYY FineReader to be 

installed.  

3 Conclusion 

Evaluation and digitization of cultural and historic heritage is one of 

the main goals in the digital European agenda. Even if the process of 

heritage digitization needs many problems to be solved that refer to 

recognition, editing, translation, interpretation, it most certainly should be 

done. These problems became more complicated for Romanian as we 

need to consider the historic period when the source was printed, and we 

have more than one period. 
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Building of P system based tools for 

diachronic text analysis  

Lyudmila Burtseva, Valentina Demidova 

Abstract 

This article considers aspects of application of advanced 

parallel computing techniques to computational linguistics Big 

Data problems, which spring from creation Web-based corpora on 

base of digitization of huge collections of historic texts scans. 

Solving of the majority of linguistic research problems requires per 

word processing that is the natural task for massive parallel 

processing provided by unconventional, high performance and their 

hybrid computing. Testing our approach, we focus on application 

of P system computing to diachronic analysis of historic texts. 

Keywords: computational linguistic, diachronic analysis, 

P system, web-based corpus 

1 Introduction 

The proposed research is aimed to support cultural heritage and historical 

linguistic domains by advanced techniques and tools of modern ICT. The 

result supposes to be web-based toolkit providing easy access to textual 

cultural heritage. 

The presented research is addressed today challenge of web Big Data 

high performance processing. Concerning cultural heritage and historical 

linguistic domains Big Data are obtained by digitization of huge 

collections of historic texts scans and creation of corresponding Web-

based corpora. The linguistic research that requires per word processing is 

the natural task for massive parallel processing provided by 

unconventional or high performance computing. The branch of 

unconventional computing, we apply as instrument, is P system 

computing [1], bio-inspired formalism mapping functionality of living 
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cell. Being during last decades our research subject, P system computing 

demonstrated successful solving of various problems of computational 

linguistic. P system based syllables division algorithm developed by 

V. Demidova [2] will be applied in the proposed toolkit for lemmatizing, 

that is the necessary step for processing rich grammar language like 

Romanian. 

For our approach testing we chose diachronic analysis of historic 

texts, that is one of the most popular today tasks of textual heritage 

processing. The idea to develop particular framework for diachronic 

analysis research has now several implementations and is explained in 

details in work [3]. Although today diachronic analysis is mostly provided 

for English where grammatical constructions do not change words 

significantly, among other researched languages there are German [4], 

Czech [5], French [6], Italian [7]. To apply general text processing 

methods to languages with specific scripting, their letters are represented 

by UTF-16 code. 

In the presented work use case choice was inspired by our previous 

research of decyrillization, which converts rare scripted historical 

Romanian texts to modern Latin writing. The realized research [8] 

includes scanned historical text digitization to UTF-16-based 

representation and creation of web-based resources. The developed 

resources has been successfully applied to manual diachronic analysis [9] 

of old Romanian texts of particular period. 

Summarizing preceding developments of both domains: P system 

based linguistic problem solutions and textual cultural heritage 

preservation - we propose web-based researchers support toolkit with 

engine working in parallel. 

2 Proposed toolkit background and architecture 

As it was mentioned in introduction, application of P system computing 

gives the advantages at problem parallelization stage. General steps of 

analysis of texts in large corpora certainly include making clusters of 

neighbor words by corresponding criterion. Such clustering can be done in 

parallel, so researchers apply clustering algorithms based on modern 

techniques including neutral networks, genetic and swarm branches of 

unconventional computing. P system branch also has been applied for 
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clustering since 2005 [10] using various types, but the latest research [11] 

focus on tissue-like P system. In our previous research we applied tissue P 

system to medical imaging problems solving [12]. For testing these 

solutions, corresponding simulators were implemented by both sequential 

and parallel tools. We intend to adapt these simulators for word clustering. 

Another stage, at which P system based algorithms can be applied, is 

lemmatization - reducing words to their lemmas. This preprocessing has 

to be done before text analysis because wordforms mostly have the same 

semantic. P systems based solutions of computational linguistics tasks, 

developed in the frame of our previous research projects include: 

mentioned in the introduction syllables division, search in strings, 

generation of possible prefixes. From elements of these algorithms we 

intend to build word processing library for proposal toolkit. 

Basing on the analysis above, the toolkit architecture supposes to 

consist of following components: 

(1) obtaining texts from corpus – standard Python tools; 

(2) pre-processing tools for lemmatization and normalization of 

selected texts – will be developed as parallel processing algorithms; 

(3) diachronic analysis tools – will be complex combination of 

methods related to English but suitable for our goals and methods 

considering rich derivations of Romanian, all steps, which can be 

implemented as parallel algorithms, will be developed applying P system; 

(4) results visualization tools -  existing ones can be applied directly. 

3 Conclusion 

This work presents background and architecture of historical linguistic 

researchers support web-based toolkit with parallel engine applied HPC 

implementation of P system computing. Toolkit architecture was 

developed on the basis of analysis of existing tools, their advantages and 

problems. The continued development of presented architecture and 

creation of resulted toolkit will be the subject of further research of our 

groups. 
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Adaptive Application for Complex Systems Modeling 

Gheorghe Capatana, Victor Ciobu, Florentin Paladi 

Abstract 

The paper presents a formal system for presentation and 

measurement of applications adaptability, and describes an original 

methodology for building adaptive applications from various fields 

of activity/research, including for computer modeling of complex 

systems in physics. 

Keywords: adaptive application, adaptability criteria, 

personalized adaptive application, complex system. 

1 Introduction 

Agent-based models (ABM) represent a relatively new methodology 

designed to study complex systems whose properties synergistically show 

the individual states of the component subsystems, and can not be 

deduced through a simple extrapolation of the evolution of components 

properties from a lower structural level to the higher one, but represent 

qualitatively new qualities of self-organization. These models can be also 

developed with adaptive computer applications. 

2 Adaptive Applications 

An adaptive application (AA) integrates: hardware, software, methodical 

approach, design and organizational tools that perform the general 

automation aspects of defined classes of problems characterized by unique 

data processing technology, information processing regimes, and 

conditions for unique operation of hardware and software (adapted after 

[1]). AA are available on workstations of researchers, connected to 

computer networks and associated in scientific research laboratories. The 

Researcher's application (RA) is the hardware and software of AA, 

designed to solve the researcher's concrete problems. 
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Applications (A) can demonstrate the following types of 

adaptabilities: (1) adapting the computer network (CN) by adding/ 

excluding a CN node (ACN); (2) improving computer speed (CS) to solve 

research problems in a certain CN node (ACS); (3) adding/excluding a 

scientific research laboratory (SRL) in the application (ASRL); (4) adding/ 

excluding an automatic post work (APW) in SRL (AAPW); (5) expanding the 

power of the application ix  to solve a new research problem p

(AΠ); (6) building the knowledge base (KB) for a new CN node (AKB); (7) 

building a new CN node (NCN - ANCN); (8) modifying the operating 

system, system and application software in one or more nodes of the CN 

(ASoft). 

Adapting an application to the advanced field of application requires 

the following resources: of staff (S), of time (T) and financial (F). In this 

context, the dimensions of the adaptability of each application are shown 

in Table 1. 

Table 1. Application adaptability dimensions 

ACN ACS ASRL AAPW Aᴨ AKB ANCN ASoft 

1 2 3 4 5 6 7 8 

1 F AF,CN / 

a1 

AF,CS / 

a2 

AF,SRL / 

a3 

AF,APW / 

a4 

AF,Π / 

a5 

AF,KB / 

a6 

AF,NCN / 

a7 

AF,Soft 

/a8 

2 S AS,CN / 

a9 

AS,CS / 

a10 

AS,SRL / 

a11 

AS,APW / 

a12 

AS,Π / 

a13 

AS,KB / 

a14 

AS,NCN / 

a15 

AS,Soft 

/a16 

3 T AT,CN / 

a17 

AT,CS / 

a18 

AT,SRL / 

a19 

AT,APW / 

a20 

AT,Π / 

a21 

AT,KB / 

a22 

AT,NCN / 

a23 

AT,Soft 

/a24 

The degree of adaptability of the AA to the family of research issues 

(FRI) is characterized by three indicators:  

 the ratio between the average cost of achieving a new issue in the

FRI in a specific application SA using AA and the average cost of

doing the same problem without using AA;

 the ratio of the average staffing requirement (mandays) to the

achievement of a new FRI problem in an SA using AA and the

average staffing requirement (mandays) of the same problem

without using AA;
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 the ratio of the average time needed to achieve a new issue in the FRI

in an SA using AA and the average time required to achieve the same

problem without using AA.

Measuring the degree of adaptability of applications and/or 

comparing the adaptability degree of different applications uses one, 

several or all of the adaptability dimensions of the applications integrates 

24 adaptability indicators of the applications (see Table 1). This 

adaptability measurement system is universal. Each indicator represents a 

dimension for assessing the adaptability of applications. 

Adaptive applications offer the following benefits: (1) time 

diminishing, average staffing and average cost of solving problems in an 

FRI in an SA; (2) a high degree of standardization of the SA; (3) high 

quality of SA and AA, and so on. 

Each Ai application demonstrates, according to Table 1, the following 

adaptabilities: }...,,{)( 24,1, iii aaAAdapt  . Let the end-user 

requirements for application adaptability are specified by the set of 

adaptive requirements Criteria = {cj| cj ≥ 0; j=1, …, 24}. 

The Criteria reprezents a customized criteria system of the 

beneficiary to evaluate the adaptability of applications. The end user's 

interest Interes(Ai) in the Ai application, measured by the customized 

adaptive assessment system, is as follows: 



24

1

,)(
j

jiji acAInteres . 

Thus, each beneficiary can build a customized application 

adaptability assessment system specifying the adaptability criteria. 

3. Life Cycle of the Adaptive Application
The fact that an adaptive application produces additional software 

qualities for the user needs, requires a technique for building adaptive 

applications that includes [2]: (1) definition of the AA requirements; (2) 

application domain (AD) description; (3) building a formal (axiomatized) 

theory of AD developed at the step (2); (4) elaboration of the AD language 

of the formal theory developed at the step (3); (5) specifying families of 

the AD problems required by the beneficiary for computing; (6) building 

the AD computer platform; (7) elaborating the adaptation components of 
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the computer platform developed at the step (6) (Adapter and other 

auxiliary modules); (8) generating customized versions of the adaptive 

applications by end users applying the components developed at the steps 

(6) and (7); (9) exploitation, maintaining and developing personalized 

applications built at the step (9) by the end users. 

4. Conclusion

In this paper, an original development methodology for adaptive 

applications and a system for measuring the adaptability of applications 

have been exposed. The presented methodology was applied to the 

development of several adaptive applications, including an adaptive-

parametric application for modeling complex systems in physics [3]. 
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Vitalization of Moldavian Printings

(1967�1989)

Constantin Ciubotaru, Alexandru Colesni
ov, Ludmila Malahov

Rezumat

In the years 1940�1989 the Romanian printings in the Molda-

vian Soviet So
ialist Republi
 (MSSR) were issued in the spe
i�


Moldavian Cyrilli
 s
ript. Many of them are of interest not only

as material to study language development, but as 
ontaining

useful or unique information. Moreover, some of these editions

keep their a
tuality till now, and it is very desirable to present

them to the 
ontemporary readers. To do this, it is ne
essary to

re-edit su
h printings in the modern Latin s
ript.

This paper des
ribes in details the revitalization of a mathe-

mati
al book.

Keywords: 
omputer linguisti
s, OCR, re-edition of printed

heritage.

1 Introdu
tion

The book we present as the obje
t of vitalization is Numbers and Ide-

als by V.Andruna
hievi
i and I.Chitoroag�a [1℄. It was published in

Chisinau in Romanian in the Moldavian Cyrilli
 s
ript (1979).

This book 
overs some gaps between high s
hool and university


ourses in mathemati
s. It is useful for s
holars presenting the golden

opportunity to widen their horizon in mathemati
s. With full and stri
t

proofs, the book presents axioms for natural numbers, numeri
al rings

and �elds, theory of divisibility in the integer numeri
al �elds, and

further generalization of divisibility for quadrati
 rings and ideals.


©2017 by C. Ciubotaru, A. Colesni
ov, L. Malahov
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The book was sele
ted for re-editing in the Romanian Latin s
ript on

the o

asion of the 
entenary of the birth of Vladimir Andruna
hievi
i.

We are proud to introdu
e this text into the modern Romanian 
ultural

spa
e.

2 Digitization, Transliteration, and Text For-

matting

The book was s
anned to PDF �le of images in gray with 600 DPI.

OCR by ABBYY Finereader (AFR) was repeated twi
e. For the

�rst OCR, we used a small spelling di
tionary in the Moldavian Cyrilli


s
ript (MC).

The result of the �rst OCR was used to 
omplete the spelling di
-

tionary. The re
ognized text was exported from MS Word as the Uni-


ode text. Then it was opened in Notepad++ and broken into words

(approx. 73.900).

Approx. 1820 of these words had �-� at their end. Almost all of these

appeared be
ause of undete
ted hyphenation, the situation that 
an be

solved by AFR with the more appropriate word list. Ea
h word of the

kind was 
on
atenated with the following word, with several ex
eptions.

Then the word sequen
e was restru
tured in the word list with the

�Sort unique� option of the TextFX plug-in for Notepad++. This word

list 
ontained approx. 2500 words, in
luding approx. 60 proper nouns.

Then we transliterated [3℄ the word list to the modern Romanian

Latin s
ript (MRL) and introdu
ed the MRL variant in the line with the

MC variant of the word. The result was 
he
ked against a big (600.000

words) list in MRL that we had 
reated for ELRR [
ite, URL℄. After

merging we got two lists of words in the book in both s
ripts: that of

�good� words and that of �bad� words (approx. 250).

Most of �bad� words appeared due to di�
ulties in transliteration

MC→MRL. The most frequent problem was 
onversion of ÿ→ia instead

of ÿ→ea (approx. 160). The �bad� words were 
he
ked manually, with

the 
orresponding 
orre
tions of the lists.
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Now we deleted MRL variants getting a word list (approx. 2320).

With this new word list uploaded to AFR, we repeated OCR. Due to the

satisfa
tory printing quality and the newly obtained spelling di
tionary,

we got less than one OCR error in a page in the text.

Now we transliterated the book text into MRL. The 160 words that

were transliterated in
orre
tly when we worked with the word list were

in
luded in the di
tionary of ex
eptions of the transliteration utility to

avoid at least these errors.

The book 
ontains a lot of formulas, two small tables, and three

diagrams (images). Most of formulas were not re
ognized ex
ept those


ontaining only letters and simple signs like +.

To guarantee the proper quality of formulas, the book should be

prepared for printing using L

A

T

E

X.

As to the text, it is enough to 
he
k it with the MS Word Romanian

spelling 
he
ker, export it, and adapt its formatting. The main volume

of work is restoration of formulas and diagrams: ea
h of them should

be rewritten using L

A

T

E

X.

As the L

A

T

E

X book original is prepared and thoroughly 
he
ked,

the text pages should be printed on the spe
ial par
hment in mirrored

view. The book is published by the typography from this par
hment.

The 
over is prepared separately.

3 Cyrilli
 Resour
e for OCR

To re
ognize the Moldavian Cyrilli
 texts with 
ertainty, we need the


orresponding spelling word list. We reported above how we worked wi-

thout it, but with the uni�ed big word list (Moldavian Cyrilli
 resour
e)

our task be
ame mu
h simpler.

It is not ne
essary to type all these words manually as we did for

the word-lemmas in MRL. Another method seems more attra
tive: the

reverse transliteration of the lexi
on in MRL to MC. From three existing

lexi
ons in MRL [3�5℄, we sele
ted the UAIC lexi
on [4℄, whi
h 
ontains

approx. 1 mln. entries, is better stru
tured, and is a

ompanied with

the morpho-synta
ti
 data (MSD tag).
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An in
onvenien
e appears in the UIAC lexi
on: it 
ontains words

from sour
es of di�erent years, and keeps the original orthography. Du-

ring these years, use of letters �a and �� was di�erent. Therefore, some

words should be additionally rewritten in the modern orthography.

The transliteration MRL → MC is performed applying the sequ-

en
e of �lters to the given text [2℄. In the order of appli
ation, we

use: pre�x �lters; su�x �lters; diphthong and triphthong �lters; �-

nal (letter-to-letter) �lters. We added some new �lters to solve this

�a/��-in
onvenien
e.

Using MSD tag, we deleted from the regular di
tionary proper noun,

foreign words and abbreviations. At the transliteration these words are

pro
essed through the di
tionary of ex
lusions.
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Concept of health self-assessment 

informational tools for preventable strokes 

Svetlana Cojocaru, Constantin Gaindric, Olga Popcova, Iulian 

Secrieru 

Abstract 

According to World Health Organization, stroke is one of the 

leading causes of morbidity. Besides that, stroke is the first cause of 

adult neurological disability. This paper describes the concept of 

informational tools for health self-assessment and management in 

the base of controllable (modifiable) stroke risk factors. Research 

and development carried out under this concept will help to prevent 

stroke. 

Keywords: information tools, preventable strokes, modifiable 

risk factors. 

1. Introduction 

Stroke is one of the leading causes of morbidity and one of the most 

important problems of modern medicine [1]. Importance of the problem is 

conditioned by major social and economic impact determined by the 

corresponding pathologies. According to World Health Organization, 

stroke is a major cause of death in the developed countries as well. 

Immediate mortality rate is far above the medium and around 20% of 

stroke patients die within 30 days. It also had a tendency to affect young 

persons of working capacity age. Every year 5,6-6 million people in the 

world develop strokes. 

In the Republic of Moldova stroke incidence and mortality rate 

remains one of leading in Europe. Stroke incidence rate rose from 20.4 in 

year 2000 to 28.19 in 2008 in 100000 population. Annually in Moldova 

more than 10123 persons develop stroke. As in the USA and in other 

countries cerebrovascular diseases in Moldova are placed on the second 

place in structure of mortality causes (28.95%) and in the general death 
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rate (16.23%). Annual death rate from stroke in Moldova for 2007 was 54 

per 100000 people. 

According to National Statistic Agency of Moldova, 14% of patients 

who survive stroke, demand nursing assistance, 59% remain with 

neurologic deficit, 27% remain with mild disability. And only less than 

10% of patients can return to their former activity. Thus stroke remains 

the main cause of severe disability [2] and request special responsibility 

from family members, becoming social and economic burden for the 

society. 

On the other hand about 10% of survivors are fully independent 

within three weeks, growing to nearly 30% by six months. These numbers 

can be increased by offering a tool that can predict. There are some 

changes in health status, which, being considered by individuals under 

stroke risk, could be overcome, excluding thus the disease appearance. 

Many people are not aware that stroke is actually preventable and that 

stroke survivors can live a normal life afterwards. Thereby, the best 

approach towards reducing the immense burden that stroke places on our 

society remains prevention. 

The percentage of potentially preventable strokes through the control 

of modifiable risk factors and lifestyle is around 50% [3]. This fact 

demonstrates not only the importance of the addressed problem in order to 

improve the quality of medical services using IT technologies, but also 

shows the great economic potential of this research. Extension of the 

working capacity period for a person predisposed to stroke, obviously, 

brings economic benefits. 

2. State of the art

A large number of researches in the field of brain stroke made it possible 

to identify and classify the major risk factors of this dangerous disease. 

There are two groups of risk factors: controllable (modifiable) risk 

factors (High Blood Pressure/Hypertension, Atrial Fibrillation, High 

Cholesterol, Diabetes mellitus, Carotid stenosis, Smoking, Alcohol Use, 

Physical Inactivity, Obesity, Nutrition, Drugs, Inflammation) and 

uncontrollable risk factors (Age, Gender, Ethnics/Race, Family History, 

Previous Stroke or transient ischemic attack, Fibromuscular Dysplasia, 

Patent Foramen Ovale). The best way to protect yourself and your family 
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members from the stroke is to assess and understand your personal 

predisposition to the cerebrovascular accident, as well as to manage 

effectively the modifiable risks. 

Nowadays there are a lot of general views over the IT solutions to 

support the clinical decision making. All of them are oriented either to a 

general view, or to a specific disease. Our interest is on the stroke related 

information systems. 

More efficient and tightly integrated systems for stroke care are 

needed. In 2005, an American Heart Association task force on the 

development of stroke systems described the fragmentation of stroke care, 

defined the key components of a stroke system, and recommended 

methods for encouraging the implementation of stroke systems of care [4]. 

The task force defined 7 key components of the Stroke Systems of Care 

Model: 

1. Primordial and primary prevention;

2. Community education;

3. Notification and response of emergency medical services;

4. Acute stroke treatment;

5. Subacute stroke treatment and secondary prevention;

6. Rehabilitation;

7. Continuous quality improvement activities.

The first three components are related directly to the stroke prevention. 

There is a growing concern about maintaining health indicators. 

Mobile/sensor technologies are expected to provide real-time information 

about vital signs and other physiological indicators of one's health and 

fitness. Monitoring systems based on these technologies are expected to 

find greater use in such applications as hospitals, home health monitoring, 

physician’s offices, elderly care facilities, fitness centres and health 

research studies. 

At present there are many devices that easy allow even an 

inexperienced user to get a number of physiological parameters of his/her 

body: numerous fitness wristbands, smartwatches, etc. Applications that 

allow using mobile devices for testing, tracking and sharing are developed 

for them. To mention just a few of them: application iHealth blood 

pressure monitor from the iHealth Lab Inc.; Scanadu Scout device to track 

several parameters simultaneously (including temperature, heart rate, 
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blood oxygenation, respiratory rate, ECG, diastolic/systolic blood 

pressure) together with a special application for iPhone; health wristband 

Simband from Samsung, which continuously monitors vital signs such as 

temperature, blood pressure, pulse, blood glucose levels, etc. and sends 

the gathered information to the Samsung Architecture for Multimodal 

Interactions cloud platform. 

Besides this, some interactive systems (including web-) were 

developed, which allow estimating the stroke risk as a consequence of the 

answers to a set of simple questions [5]. Such systems are useful for 

verification at long periods of time, but not for a frequent monitoring. 

3. Information tools for preventable strokes

Health self-assessment informational tools (as web and mobile 

applications) for individuals predisposed to preventable strokes are aimed 

at comprehensible suggesting (in a manner understandable to anyone) 

individuals predisposed to stroke some advices regarding the actions that 

should be taken if he/she feels some symptoms, which lead to worsening 

health (using only data that do not need an extra effort). Applications for 

information and alarming the danger of worsening could be accessed by 

individuals predisposed to stroke through the mobile phone. 

We assume that the informational tools for health self-assessment and 

management will be able to work with data collected by devices and 

applications described above. The constant appearance of new such 

devices and corresponding applications, their high cost yet, inability to 

work with them for a certain categories of end-users require  

informational tools to be sufficiently flexible and independent (as much as 

possible) from the source of the input data about the patient's condition. 

We selected the most important modifiable risk factors (High Blood 

Pressure/Hypertension, Atrial Fibrillation, High Cholesterol, Smoking, 

Alcohol Use, Physical Inactivity, Obesity, Nutrition, Drugs) and persons 

of working-age 35-64 years. 

The following four target groups of potential users were identified: 

1. Persons uninformed about their own risk of suffering a stroke;

2. Persons with a high degree of concern (given the family history),

but who did not assess their own risk;
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3. Persons who have assessed and know their own risk, but do not

know that stroke is preventable;

4. Persons who know their own risk and want to control the

modifiable risk factors.

For each target group specific IT applications with clearly defined 

goals should be developed, including decision support systems to assess 

the stroke risk based on modifiable factors by providing necessary 

recommendations, information about the appropriate clinics and 

departments. In case of need the results can be sent directly to decision-

making healthcare professionals. 

To achieve the main goal the following basic tasks were determined: 

 Identifying, storing, structuring and formalizing medical data and

knowledge related to the stroke onset.

 Creating a unified knowledge base on the stroke onset problem,

based on data extracted from statistics studies (evidence and

precedents), literature and experts opinion.

 Elaborating the methodology for creation of some models, based

on predictive personalized knowledge regarding health self-

assessment, using an analysis of risk factors, designed for

individuals predisposed to stroke.

 Developing a system of structuring target groups of persons

predisposed to stroke and creating some specific scenarios and

strategies for each group.

 Developing IT applications, specific for the given patient's group

and the selected scenario.

 Improving medical service by liquidating barriers and

inconveniences existing at present on different levels of

cooperation between patient, family doctor and neurologist, by

organization and support of an integrated flow of data and

knowledge.

4. Conclusion

At the moment, in the world there is no a unique informational tool to 

assess/self-assess the stroke risk factors, to monitor modifiable risk factors 

and to manage the treatment prescribed by the doctor. The approach to 

create a unified database containing knowledge, evidence and precedents 
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concerning cause-effect relationships between risk factors and stroke is 

novel. Orientation to work with various mobile gadgets, in order to 

organize an exchange of physiological data, is within the last trends in the 

development of medical information systems. 

Such informational tools could be used as tools for research in the 

field, and will allow developing predictive models of the patient's health 

status. As a result, they will help the patient and the specialists in 

choosing the strategy for monitoring the patient's health status. 
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Downloading useful information 

from Web with the help of a Crawler 

Victor Cozlov, Mircea Petic 

Abstract 

The article describes a research of a methodology of Web 

crawler development. The experiment is done on a news site 

noi.md which is both Romanian and Russian language. Article 

presents some statistics on dependence between the volume of 

downloaded information and processing speed. 

Keywords: Internet, web-crawler, Jsoup library, text 

processing. 

1 Introduction 

The Internet has superflus of information as references, publicity, 

comments etc. We have to make a plan, how to release the information 

from the unnecessary data for the future use [1]. The main aim of this 

article is to study possibilities of Web Crawler and to develop a program 

for text downloading from the Internet. This program has also to clean the 

document from the redundant information. 

This article consists of: introduction, web-crawler overview, the 

general information of types and the use of Crawler, implementation of 

Web Crawler, application structure and results. 

2 Web Crawler overview 

Web Crawler is a program for page search by the reference. Its work 

consists of page downloading, revision for new reference and page 

indexing [2]. Indexing is used for the quicker search of pages inquired by 

a user [3]. Crawler has to be effective in work so it has to maintain all 

changes of information it responds to [4]. Web Crawlers are used by 
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searching systems such as google, yahoo, being for general data search. In 

addition, we use Web Scraper to find special information. 

Web Scraper is the modernization of Web Crawler. It is used for data 

search such as prices, e-mail addreses, phone numbers, images in database 

and the Internet [5]. 

Modern Crawlers are classified by such attributes as autonomy – the 

task must be implemented without a user’s support, adaptability – 

implementation of different types of tasks with minimal changes, 

communicative ability and the ability to work together with other 

Crawlers – implementation of tasks in relation with other Crawlers for 

high efficiency [6]. If an URL makes an error mistake, the next link from 

the list must be used. 

An effective work of Web Crawlers which can be achieved with the 

crawlers consists of multiple processes running on different machines 

connected by a high-speed network [3]. 

A Crawler can be used for: finding the nessesary information 

according to the user’s request; checking connections between pages 

(links) and the degree of their complication [7]; downloading web pages 

for the next processing. 

3 Implementation of Web Crawler 

The developed Web Crawler works in the noi.md site area. As 

Crawler remains in recourse every time, each link for the next processing 

is verified for compliance with the pattern: 

"^(https?)?://[a-z_/.]+/(news_id)/[0-9]{3,6}$" 

We use Jsoup library for page downloading and link processing as this 

library offers very good API which is clear and has a lot of functions for 

effective work with data.  

For the data storage a database is used and all the information is 

written in files. We can find each news in two main languages: Romanian 

and Russian, so for more complete data each news is downloaded in both 

languages. 

Program does not need a large space for data saving as only the text 

information from each page and links are saved. We need about 15.4 

seconds for a page download and extraction of information from it. This is 

a relative calculation based on 3000 downloaded pages. 
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Each new link for list of URLs is checked for unique to exclude the 

possibility of repetitive downloading [3], then the cycle is repeated. The 

data about the dependences between amount of information downloaded, 

useful text extraction and the processing speed [8] is presented in Figure1.  
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Figure 1: Program's results 

Using results in Figure 1 we can also estimate the utility [9] of 

information, which is presented as quotient between the final data and the 

downloaded data [10]. 

The program had a problem while it was tested. This problem 

appeared because of links contained “https” at the beginning. We suppose 

this was a problem of Jsoup because it could not download the 

information from such links. The problem was solved with simple 

eliminating of the letter „s” from these link. A link without „s” is less 

secure, so the problem dissapeared. 

4 Conclusions 

The developed tool is useful in computational linguistic resources 

creation, which is of great importance in natural language processing 

applications. Building both large and good quality text corpora is the 

challenge we face nowadays. The results of this article can become a 

starting point for data processing of the downloaded text and the creation 

of text corpora of different domains. 
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A linear model for multidimensional 

Big Data visualization 

Vadim Grinshpun 

Abstract 

The author introduces and analyzes a model that allows 

organizing visualization of primary linear constructs such as 

interval, simplex and polygonal lines in multidimensional space.  

Keywords: computer science, big data, data visualization, 

multi-dimensional data, exploratory data research. 

1 Introduction 

There is a number of well-known methods to visualize multidimensional 

data. There are Andrews plots, Bergeron’s or Wong’s model, Zinoviev 

model as well as Klaft, Barrett and Kleiner-Hartigan, and every one of 

them introduces their own unique mechanism for data visualization [1]. 

However, every method has its own limitations, narrowing the field of 

direct applicability. For instance, the Bergeron’s model visualizes the 

wave lines and the time interval for a single frequency [2]. The main 

advantage of applying the multidimensional data model is its effectiveness 

against large sets of data, the main problem is its relative complexity 

when applies to simple tasks of operational data processing [3]. 

2 Model Definition 

As a basis for the visualization of the multidimensional data we propose to 

use a linear modification of a multidimensional observation Н into two-

dimensional curved line £н(t), so Н approximates £н(t), with the provable 

condition that for close values of the dimensional attributes of 

observations Н and Х will be shown in close proximity by the graphics 

reflecting £н(t) и £х(t), in case these values are relatively distant, the 

graphical lines will appear to be far apart.  
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For the analysis of the proposed method we will use the most general 

system of data presentation. Let’s pick a vector H in Рn – a space with 

finite number of dimensions.  

,  (1) 

To create the visualization of the vector we have to create a basis for 

transformation as a set of orthogonal functions {φ (t)} → ∞. Legendre 

orthogonal polynomials can be applied on a 0 to 1 interval, set of which 

can be shown as {ʄ (t)} → ∞. In this case the vector Н with coordinates 

(н0, н1, н2, н3….нn-1) ∈ Рn corresponds to the following function: 

,                                            (2) 

Let’s introduce into the model a second vector: 

,  (3) 

And its corresponding function: 

,     (4) 

And now we can transform two points H & X from the  space, into 

the graphical view of their representative functions Ен(t) and Ех(t) (Fig. 

1). 

Figure 1. Visualization of H & 

X from the  space. 

Figure 2. Visualization of 

smooth surface, corresponding 

to the HX segment from the 

space. 

When we consider H & X to be vectors, with the beginning located at 

the beginning of the coordinate system selected for the  space – then 

the relative proximity between all points in the  space becomes 

definitively tied to the graphical representations of their corresponding 

Ен(t) and Ех(t) functions, with axes values defined as 

. By introducing a variable, we can create an 

equation: 
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 (5) 

From which obviously follows  which can be 

viewed as a definition of a multidimensional “straight” line connecting H 

& X in the  space, and we can use the expression similar to (5) to 

represent a multidimensional segment HX 

 where с∈                           (6) 

Assuming “c” represents the distance in the  space and the formula 

6 can be shown as the proposed model: 

       (7) 

This function has two arguments , which allows us to get a 

graphical function that visually represents the HX 

segment as a smooth surface. (Fig. 2).  

3 Sample Application 

To test the model, we will apply it to a sample set of multi-dimensional 

objects with the following values: H1 = {1, 0, 0, 0}, H2= {0, 1, 0, 0}, H3 

= {0, 0, 1, 0}, H4= {0, 0, 0, 1}.  

Figure 3. Proximity visualization of H & X from the  space. 

Using polynomial matrices and get the  

 Е = . 

Е cannot be shown in 3D, and therefore it is being substituted with a 

2D line Е1(t) [6]. Let’s see how the graphic would look for the following 

values Н:

Х:
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40

60

1 3 5 7 9 11

Н

Х
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Figure 3 illustrates the result of the test model, maintaining relative 

proximity. 

4 Conclusion 

In this paper, we outline a model that enables effective visualization of 

multidimensional data. Next, we will apply the model to real-life data to 

evaluate its effectiveness for exploratory data analysis and data clustering. 
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Romanian Spelling and Grammar 

Checking Systems 

Veronica Iamandi  

Abstract 

This article provides description about spelling and grammar 

checking system developed for detecting various grammatical 

errors in Romanian sentences. This system utilizes a full form 

lexicon for morphological analysis, and applies rule-based 

approaches for part-of-speech tagging and phrase chunking. The 

system can detect and suggest rectifications for a number of 

grammatical errors, resulting from the lack of agreement, order of 

words in various phrases.  

Keywords: JSON data, JavaScript, POS, spelling system, 

grammar checking system. 

1 Introduction 

Romanian spelling and grammar checking system is a program that 

corrects a sentence at the word and syntactic level. The system rearranges 

necessary data depending on the sentence structure through semi-

structured data. The system cannot correct 100% of what the user aims. 

The program is divided into two systems: Correct Spelling System and 

Correct Grammar System. 

The Correct Spelling System checks each word from the sentence if 

the word exists in dictionary. If it does not exist in dictionary, the system 

finds similar words from the dictionary and offers them to the user. 

The Correct Grammar System checks the form of the components of 

the sentence from the basis form of the sentence, and if it does not suite 

for processing, the system corrects the form depending on the subject of 

the sentence. 
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2 Check and correct spelling system 

Check and correct spelling system uses JavaScript program language and 

JSON data. A user inputs a sentence and checks each word from 

Romanian dictionary. In addition, if the words do not exist in JSON data, 

the processing engine finds similar words and recommends the words to 

the user. 

Figure 1. Architecture of correct spelling system. 

At the first step it is necessary to make a Romanian dictionary in 

JSON data. Here is an example JSON data. It is made into an array: 

{"words":["pisică","câine","tigru","păsări","pește","crocodil""]}. 

The dictionary is formatted in JSON. Here is the source [1], which 

contains more than 100,000 Romanian words. 

Figure 2. The dictionary formatted in JSON. 
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At the second step the system verifies if the word exists or not. If the 

word exists in JSON, the message "cuvîntul acesta este în dicționar" 

appears, else if the word doesn't exist in JSON, there appears the message 

"cuvîntul acesta nu este în dicționar". 

At the third step, if the word doesn't exist, the system finds the 

corrected word with the help of processing engine. Processing engine is 

used by Edit Distance [2]. Edit Distance is a way of quantifying how two 

dissimilar strings (e.g., words) are sticked together by counting the 

minimum number of operations required to transform one string into the 

other. Edit Distance finds applications in natural language processing, 

where automatic spelling correction can determine candidate corrections 

for a misspelled word by selecting words from a dictionary that have a 

low distance to the word in question. 

Processing engine should work like the following examples. 

- calculatoi → calculator. The symbol "i" in the word changes to "r". 

- calclator → calculator. The symbol "u" is added anto the word 

between the symbols "c" and "u". 

- ccalculator → calculator. The symbol "c" is deleted from the word. 

Here is the result calculated by Edit Distance. 

Figure 3. Results calculated by Edit Distance for word 

”calculator”. 

Approximately 600 new words were generated by Edit Distance 

function. 

3 Check and correct grammar system 

Check and correct grammar system uses JavaScript program language and 

JSON data. A user inputs a sentence, the system checks each word of the 
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sentence and associates it with the respective Part of Speech (POS) using 

the dictionary of Romanian POS. If the sentence is not correct from the 

Romanian grammar point of view, the program rearranges the words at 

syntactic level. 

Figure 4. Architecture of correct grammar system. 

The first step divides the input sentence word by word, and puts 

them into an array. 

At the next step, it is necessary to make a POS of Romanian 

dictionary in JSON data. The MULTEXT-East [3] resources are a 

multilingual dataset for language engineering research and development. 

This dataset contains Bulgarian, Croatian, Czech, English, Estonian, 

Hungarian, Lithuanian, Macedonian, Persian, Polish, Russian, Romanian, 

Russian, Serbian, Slovak, Slovene, and Ukrainian languages.  

The MULTEXT-East project adapted existing tools and standards to 

those languages.  

The database with POS code type can be obtained from the site 

nlptools.info.uaic.ro [4]. This database has approximately 1.1 million 

words with POS code type included. 

Example word "Calculator", code is "Ncmsrn": 

"N"- Noun, "c" - Common, "m" - Gender Masculine, "s" - Number 

Singular, "r" - Case Direct, "n" - Not Defined. 

Therefore, JSON form will be like the following: 
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{ "WORD" :[ "POS Code" , "OriginalWord" , "InfiniteWord" ] } 

Here is an example of JSON data with POS code type. 

{"allword":[ 

{"calculator":["Ncmsrn","calculator"]}, 

{"merge":["Vmip3s","merge"]}, 

{"repede":["Afpfsrn","repede"]}, 

{"studiat":["Afpmson","studiat","studia"]}, 

]} 

Figure 5. POS of word in JSON 

arrSen = ["calculator", "merge", "repede"]; 

posSen = ["Ncmsrn", "Vmip3s", "Afpfsrn"]; 

When POS code types were associated to each word, the sentence is 

corrected by the rules of Romanian grammar. For example, in the textbox 

the following sentence is input: "Calculatorul merg repede". The sentence 

is incorrect because the word "merg" is a Verb Form of the First Person 

type. Therefore, the system must find in array the word, which has the 

verb form of the Third Person type.  

 {"merg":["Vmsp1s","merge"]}  

"merg" is parent key and "Vmsp1s" and "merge" are childern keys. 

{"merge":["Vmip3s","merge"]} 

"merge" is parent key and "Vmip3s" and "merge" are childern keys. 
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So the system can find correct verb by children keys, the original 

word of "merg" namely "merge" and the correct verb form of Third 

Person type "Vmip3s". 

4 Conclusion 

Romanian Spelling System and Grammar Checking System can check if 

input words exist in dictionary or no. In addition, they can transform 

incorrect forms of words to the correct ones. These systems find where 

incorrect verbs, verbal nouns, adjectives, articles, nouns, pronouns and 

some particles are. However, there are also things that this program 

cannot do. Another problem is that computer cannot understand the 

meaning of some words.  
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Abstract

We present succintly a case study on automatic generation of
natural–style proofs in elementary analysis, by employing algo-
rithms from computer algebra. In order to produce proofs which
are similar to those realised by human mathematicians, we use
a system similar to sequent calculus, in which the most difficult
steps consist in finding the witness terms for the existential go-
als and the instatiation terms for the universal assumptions. We
study how these can be found by using computer algebra algo-
rithms, and what are the current limitations and perspectives of
this approach.

Keywords: computer algebra, natural–style proving.

1 Introduction

The production of natural–style proofs (that is: proofs which are simi-
lar to the ones written by human mathematicians) may be of increasing
importance in the future, because understanding proofs may become
crucial in order to trust them, or to guide the difficult steps, or to
use them in tutorial presentations. The Theorema system [1] aims at
constructing such proofs in various areas of mathematics.

For proofs in elementary analysis, in which many notions are defi-
ned using complex formulae with alternating quantifiers, we developed
the original strategy of S-decomposition [2], which is particularly suit-
able for treating such formulae. In such proofs, the tasks which are
most difficult to automate consist in finding the witness terms for the

c©2017 by Tudor Jebelean
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existential goals and the instatiation terms for the universal assumpti-
ons. Our case study in Theorema demonstrates how these tasks can be
partially solved by using cylindrical algebraic decomposition and quan-
tifier elimination [3]. Although in linear cases this approach is mostly
successful, in problems of higher degree it often fails. We investigate
various methods to improve the performance in these cases.

2 Natural–Style Proving

In the Theorema system we aim at producing proofs which are similar
to those realised by humans1. For instance, let us consider the proof of
the statement: “The sum of two convergent sequences is convergent”.
The convergence of a sequence f (function from naturals to reals) is
defined by the following formula with alternating quantifiers (ǫ is real,
m,n are naturals):

∃
a

∀
ǫ>0

∃
m

∀
n≥m

|f(n)− a| < ǫ

The proof shows that the instance of this formula for f1 + f2 (the
goal) is implied by the two instances of the same formula for f1 and for
f2 the (assumptions).

The natural–style proof proceeds by eliminating in parallel the same
quantifiers from these three formulae, as described in [2]: In the exis-
tential assumptions, the quantified variable is transformed into the so
called “such a” Skolem constant, and after that the existential goal is
proved by using the appropriate “witness term”. In the universal goal,
the variable is transformed into the so called “arbitrary but fixed”
Skolem constant, and after that the universal assumptions are instan-
tiated with the appropriate terms. A special feature of our approach is
to treat separately the condition associated to the quantified variable
(in the formula above: ǫ > 0 and n ≥ m), which generate separate
independent goals.

1This is not the same as natural–deduction.
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3 Using Algebraic Methods

While the Skolemization steps mentioned above have a trivial imple-
mentation, the construction of the witness terms and of the instan-
tiation terms is quite difficult to perform automatically, because the
necessary information becomes available only later in the proof. We
experimented the use of algebraic techniques for finding these terms,
following a method presented in [4]. In the example above, the succes-
sive steps of the proof are essentially equivalent to a prenex decompo-
sition of the whole original implication, and formulae obtained are:

∀
m,n

∃
p
∀
q
(q ≥ p =⇒ q ≥ m ∧ q ≥ n)

∀
a1,a2

∃
a
∀
ǫ

∃
ǫ1,ǫ2

∀
x1,x2

(|x1−a1| < ǫ1∧|x2−a2| < ǫ2 =⇒ |(x1+x2)−a| < ǫ)

For proving the first formula we can use CAD–based quantifier eli-
mination (QE), and the answer is true, but this does not reveal a
natural–style proof. If we use QE on the same formula without ∀

m,n
∃
p
,

then we obtain a relation between m,n, p which allows to infer the
expression for p (will be the maximum of m and n) by adequate pos-
tprocessing. For proving the second formula, one can apply QE/CAD
first on the formula without ∀

a1,a2
∃
a
, which returns a = a1 + a2. Then

one substitutes a and eliminates further the quantifiers ∀
ǫ

∃
ǫ1,ǫ2

, on which

QE/CAD returns ǫ1+ ǫ2 ≤ ǫ, which allows to infer appropriate witnes-
ses for ǫ1 and ǫ2, namely ǫ/2.

The above approach is not very efficient, because it needs a repe-
ated CAD for each formula. Therefore we are investigating possible
adaptations of the algorithm which can extract all the necessary infor-
mation in one pass. Moreover, while the algorithm works relatively fast
for expressions of degree one (as above), it is overcoming the system
resources for expressions of higher degree (for instance, when we try to
do the analoguous proof for product instead of sum). For overcoming
this problem we are operating various simplifications of the original
formulae, which need less computation, but still are able to reveal the
same desired terms.
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4 Conclusion

The use of algebraic algorithms for producing specific terms in natural–
style proofs is successful at least in simple cases, however for more
complex problems it becomes unproductive. Performing various case
studies in elementary analysis appears to hold the promise of finding
more efficient and effective versions of the algorithms, which will be
able to solve more complex problems.

Acknowledgments. Supported by the project “Satisfiability Checking and

Symbolic Computation” (H2020-FETOPN-2015-CSA 712689).
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Preparation of article-level metadata 

with bibliography lists 

Dorina Luca, Tatiana Verlan 

Abstract 

In this paper we present the problem which arises in 

connection with article-level metadata preparation for international 

databases, especially when these metadata are to contain 

bibliography lists. This problem leads to the necessity of 

automatized approach to the process of bibliography making in this 

framework. 

Keywords: indexing, metadata, automatization process, 

impact factor. 

1 Introduction 

Nowadays, scientific community becomes more and more concerned with 

not only presenting its research results, but getting greater indexing 

recognition as well. So, researchers seek to publish their results in journals 

with high impact factor, and scientific journals in their turn tend to be 

present in the most prestigious international databases such as SCOPUS, 

Thomson Reuters, INSPEC, zbMATH, DOAJ, etc. 

Each article is analyzed, followed and processed (indexed) by 

specific databases. However, its true usefulness for scientists will be 

determined by the citations received by its articles. Each article is 

represented by bibliographic information and citation information which 

points to original articles. [1] This information is used by bibliographic 

and citation databases in their tools that search and follow the articles. 

The databases are now updating the lists of journals that they follow 

up and ask respective editorial boards to provide updated information 

about the journal, at the same time they are asking for metadata about 
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journals and articles published by them. In different databases there are 

different requirements and different format of metadata presentation.  

In this paper we describe the importance of a tool that would 

automate the process of obtaining the metadata. A system was developed 

and used already by the Institute of Mathematics and Computer Science of 

the Academy of Sciences of Moldova. It helps us to solve the problem of 

bibliography automatizing when preparing article-level metadata – the 

process which is necessary if the journal tends to obtain a higher impact 

factor. The goals of this project are to reduce the preparation time for 

metadata and to obtain more accurate and complete information about an 

article. 

2 Article-level metadata 

The metadata created for journal articles by authors and publishers allow 

them to document key elements relating to their works. The most concrete 

definition about metadata says that it is data that provides information 

about other data. Metadata consists from information that describes the 

content, quality, history, availability and other characteristics of the data. 

In other words, metadata is a container element for information 

concerning the article that identifies or describes the article. [2]  

As to the field of journals and books publishing, we need to consider 

such metadata as articles metadata. Such type of metadata may contain 

bibliographic data (authorship, article title, copyright year, and publication 

date), descriptive material (keywords and abstracts), and any numbers 

identifying an article. Some journals distinguish three types of article 

metadata: about the specific article, about the journal, and about the issue 

of the journal containing the article. [3] 

When creating metadata for a journal article, the author or the 

publisher identifies its basic elements: the author, title, journal name, 

volume number, issue and creates a Document Type Definition (DTD) 

consisting of those elements. A DTD is a structured, tagged representation 

of an article. This DTD usually is created according to the requirements of 

the respective database or community. Using a DTD and data files, 

information regarding your articles can easily and accurately be 

communicated to other members of scientific community, publishers, or 

online service providers. 
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3 Bibliography in article-level metadata 

Initially, the list of references in scientific articles was intended for the 

reason that authors could be based on the already published. Using this 

list, if necessary, readers can find and read more relevant information 

concerning the problem described in the article. To facilitate the search for 

the publications cited, the information must be as much accurate and 

complete as possible. 

For greater indexing recognition, scientific journals are interested to 

be present in the most prestigious international databases in the respective 

domain, for example, for Computer Science these are SCOPUS, Thomson 

Reuters, INSPEC, zbMATH, DOAJ, etc. Each database elaborates its own 

format for article-level and journal-level metadata. 

zbMATH is one of the biggest databases that offers access to 

bibliographic data, reviews and abstracts both in pure and applied 

mathematics areas. They have been developing a new specific XML input 

format – zbJATS based on the Journal Article Tag suite by NBCI. 

The process of bibliography automating becomes more difficult if the 

information provided by authors is incomplete or does not correspond to 

the journal requirements. Therefore, we kindly ask authors to provide 

complete and accurate information about sources. This information has to 

be written in LaTeX in accordance with the requirements of Computer 

Science Journal of Moldova (CSJM) based on IEEE2015 standard. 

An article can have many bibliographic references, and writing all 

this information by hand, in XML format, requires a lot of time. That’s 

why we consider that it is necessary to develop a system that will 

automate this process according to international standards and will 

guarantee good results in a record time. 

4 Practical application and method of algorithm realization 

Using a system whose purpose is to automate the process of obtaining the 

metadata will save time, money and also will offer complete information 

in a record time. 

As input data we use articles written in LaTeX-e, according to the 

requirements of CSJM. Below we have an example of how a journal 

reference written in LaTeX should be provided as a result in XML format: 
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<ref> 

<element-citation publication-type="journal" publication-format="print"> 

<name> 

<surname>Pustejovsky</surname> 

<given-names>J.</given-names> 

</name> 

<article-title>The Generative Lexicon</article-title> 

<source>Computational Linguistics</source> 

<volume>17</volume> 

<issue>4</issue> 

<fpage>409</fpage> 

<lpage>441</lpage> 

<year iso-8601-date="1991">1991</year> 

</element-citation> 

</ref> 

The system recognizes the bibliographic references of articles using 

the regular expressions. For every specific element of an item, we 

construct search patterns using different characters. For example, the 

following search pattern searches in the reference only the author names: 
" / \ \ \b ib i tem\{ [0 -9a-zA-Z,  _- ]+ \ } ( . *?) \ \ \ \ tex t i t / i " .  

The developed system has processed already 4 issues, which means 

32 papers of CSJM. Our experience has shown that approximately 85% of 

references are processed properly by the system. Those remained 

erroneous are because of the authors’ carelessness or some nonstandard 

item which was not foreseen in the system. 
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Variety of stroke prediction models, 

risk factors and underlying data sets 

Galina Magariu, Tatiana Verlan 

Abstract 

This work is devoted to the analyses of variety of stroke 

prediction models, risk factors and underlying data sets taken into 

account. The aim is to define the most appropriate ones for stroke 

prediction model construction in the conditions of Moldova clinics 

and population. 

Keywords: stroke prediction models, risk factors, underlying 

data set, NIHSS score, Bartel scale. 

1 Introduction 

At present, there is a great variety of stroke prediction models. For a long 

time, stroke remains at one of the first places in the world as a cause of 

death and disability of the population. Therefore, the concern of the entire 

population and medical community, in particular, about the prevention of 

this dangerous disease, is understandable. And also, the interest of 

neuropathologists is clear when they want to be able to predict the 

occurrence of this disease, to identify risk groups among the population, 

to prescribe preventive measures and treatment that could prevent the 

disease or reduce its severity. So, it is understandable the large number of 

prognostic models, in which different goals are set, various situations of 

stroke, as well as various risk factors, are taken into account. Different 

data sets are available for models construction as well. 

Moreover, the practice of using these models has shown that models 

are individual in their application both geographically and in time. Models 
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developed in one country, for example, in the US, may be not suitable for 

use, for example, in Germany or Moldova, and even within the same 

country, but in different clinics or for another population subset. Models 

developed 20 years ago cannot be used (or will yield results with much 

less accuracy) today. This is because with the course of time the living 

conditions of the population change, the susceptibility of the organism 

changes, and the risk factors change. 

In this work we describe the attempt to analyse stroke prediction 

models, the picked out risk factors and used underlying data sets. The aim 

is to define the most appropriate ones for model construction in the 

conditions of Moldova clinics and population. 

2 Stroke prediction models and tools used 

In the framework of the project “Mathematical modeling of risk factors 

and clustering of patients for preventive management of stroke” the group 

of researchers from the Institute of Mathematics and Computer Science is 

going to create mathematical model which will be able to differentiate 

patients which are potentially at the risk of having stroke. Thereby, people 

that are at high risk will get adequate preventive treatment. 

In the intensive care units for neurological patients and 

neurorehabilitation of the Federal State Institution (FSI), “Medical and 

Rehabilitation Center of the Ministry of Health and Social Development 

of Russia”, the research was conducted and models were developed for 

predicting functional outcomes after a severe and extremely severe stroke 

[1]. The purpose of these models is to predict the likely scenario of the 

development of the disease on the basis of a set of initial characteristics. 

If, as a result of the curative effect, the scenario improves, then therapy is 

recognized as effective, and vice versa. 

There was developed a model of assessment prediction on the Bartel 

scale in 1, 3, 6 and 12 months after stroke, which includes initial 

assessment on the Bartel scale and National Institutes of Health Stroke 

Scale (NIHSS). For patients with brain infarction in the medial cerebral 

artery basin it was expedient to include additionally into the model an 

assessment on the ASRECTS scale. When predicting unfavorable 

outcome (5-6 numbers on Rankin scale) the most significant is an 

assessment according to the Glasgow Coma Scale (GCS) on admission. 
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The complex model gives the more accurate forecast: Complex_index = 

7.14 – 0.07 NIHSS – 0.548 GCS – 2.91 Bartel (0) – 0.005 × (transverse 

dislocation, mm) – 1.03 × (axial dislocation, mm).  

These models contain only generally available indicators, so their 

introduction into clinical practice will not require additional financial 

costs. At the same time, an early assessment of the prognosis will allow 

the development of individual rehabilitation programs and monitor their 

effectiveness at different recovery times after a stroke. 

Another 3 models were developed using the data on 538 consecutive 

acute ischaemic and haemorrhagic stroke patients enrolled in a Stroke 

Outcome Study [2]. These models use different sets of variables: from 

simple clinical ones to the set with added more complex clinical variables 

and information from the first computed tomography (CT) scan. For 

Model I there were taken age, pre-stroke independence, arm power and a 

stroke severity score. It appeared that it didn’t perform better than Model 

II with age, pre-stroke independence, normal verbal component of the 

Glasgow coma score, arm power and being able to walk without 

assistance. Model III with simple clinical variables and two radiological 

variables was not statistically superior to model II. Models were 

developed using multivariate logistic regression analysis. The authors 

consider that outcome prediction was not significantly improved with CT-

derived radiological variables or more complex clinical variables [2]. 

There is some other direction for prediction models for stroke: 

mortality prediction after hospital admission for ischemic stroke [3]. 

Usually, cases of hemorrhagic stroke or transient ischemic attack were not 

included. Individual risk of mortality of a patient at admission is a 

valuable criterion for determining adequate clinical care and identification 

patients at high risk for poor outcomes who require more intensive 

resources. One of the examples of such models is World Wide Web–

enabled bedside tool for risk stratification at the time of presentation for 

patients hospitalized with acute ischemic stroke [3]. Data from the Get 

With the Guidelines–Stroke (GWTG-Stroke) database were used. For this 

study there were used cases of ischemic stroke in 274 988 investigated 

patients registered in 1036 hospitals during almost 7 years. Cases were 

randomly divided into a derivation (60%) and validation (40%) set. Also it 

is important to be noted that another model was derived and validated for 
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109 187 patients (from those 274 988) with a NIHSS score recorded. It 

was done because NIHSS score was not normally documented for all the 

patients, but it was interesting to test the hypothesis that NIHSS score 

would be a strong determinant of mortality. To determine the independent 

mortality predictors and to assign point scores for a prediction model, 

logistic regression was used. Model distinction was measured by 

calculating the C statistic from the validation sample. In-hospital mortality 

was 5.5% overall and 5.2% in the subset with recorded NIHSS score. Risk 

factors associated with in-hospital mortality were age, arrival mode, 

history of atrial fibrillation, previous stroke, previous myocardial 

infarction, carotid stenosis, diabetes mellitus, peripheral vascular disease, 

hypertension, history of dyslipidemia, current smoking, and weekend or 

night admission. The C statistic was 0.72 in the overall validation set, 0.85 

in the model with NIHSS score and 0.83 in the model with NIHSS score 

alone. One of the authors’ conclusion is that “The NIHSS score provides 

substantial incremental information on a patient's short-term mortality risk 

and is the strongest predictor of mortality” [3]. 

It is obvious that comparison of different models is a very complex 

task and in many cases is not proper. But from the other hand, it is 

interesting to take in consideration the previous experience. To easier 

appreciate the diversity of models’ parameters (input and output) from 

different points of view and to choose those interesting for the moment for 

comparison or discussion, the summary table is being created. The models 

in it are sorted by year of publication of the corresponding paper 

describing the model. The table includes characteristics of underlying 

datasets, methods used and models’ output parameters as well. Table 1 

shows its fragment. 

At present time almost 40 research papers describing stroke 

prediction models are being considered by us. Some of them present the 

corresponding models which can be used by the readers, some give access 

to dataset used. All this helps in understanding the significance of the 

parameters used and construction of new models. 

Acknowledgments. A part of the research for this paper is supported 

by the project “Mathematical modeling of risk factors and clustering of 

patients for preventive management of stroke”, 16.00418.80.07A. 
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Table 1. Fragment of the summary table with 41 input parameters of 

15 analysed stroke prediction models 
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Treebank Annotator for multiple 

formats and conventions 

Cătălina Mărănduc, Florinel Hociung, Victoria Bobicev 

Abstract 

The UAIC-RoDepTreebank becomes an important balanced 

corpus, with increasing dimensions, which is intended to be used 

for multiple applications. For this purpose, it will be available in 

several formats, classical syntactic, semantic, Universal 

Dependencies and PROIEL. Dependency trees are in XML format, 

and for viewing it, we use frameworks that allow manual 

annotation or automatic annotation correction. As the interface used 

so far only allows working with the classic syntactic format, we 

present here a new, multifunctional interface that allows the input 

of any tree format. 

Keywords: natural language processing, dependency 

treebank, manual annotation, automate supervised annotation. 

1 Introduction 

Corpora are very important resources for Natural Language Processing, in 

the absence of which there is no possibility of training the programs and 

of making searches. The degree of computerization of a language depends 

on the existence of large corpora with many types of consistently 

annotated information. 

UAIC-RoDepTreebank [4, 5] has complete morphological analysis 

[9] and syntactic classic annotation, in Dependency Grammar [6], entirely 

supervised. The classical syntactic format has now 19,825 sentences and 

389,357 tokens, punctuation included. The specificity of our corpus is the 

tendency to cover all the styles of the language, being more interested in 

the non-standard language. We already have 2,575 phrases on chat 

communication and 6,882 phrases in old Romanian, written from the 
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seventeenth to the nineteenth century, although it is difficult to create and 

train tools to process these types of texts. 

In order to make the corpus accessible for multiple applications and 

as many users as possible, we decided to transpose it into an international 

format, Universal Dependencies, (UD), maintained by a group that brings 

together over 30 treebanks [8]. Currently, the UD format of our treebank 

has 4,600 sentences and 101,568 tokens, and other sub-corpora are in the 

course of transformation. 

Another purpose of our work is to add new complex annotations to 

the corpus, so we started creating another format, in which the syntactic 

trees are transformed into semantic dependency trees. This format has 

now 4,405 sentences with 72,607 tokens, and other sub-corpora are in 

course of transformation. 

As the trees are in XML format, (or CONLLU for the UD format) [1], 

annotators and users have the necessity to visualize, and eventually 

modify them using a framework. The one used so far has been created 

according to the classic format of the treebank and only allows uploading 

sub-corpora in this format. 

We present here a new multifunctional and flexible framework used 

currently for dealing with the new (UD and semantic) formats of our 

treebank. The tool has been created as a dissertation project [2], being able 

to perform all the new tasks of the treebank that the old annotator could 

not fulfill. Each function has been experienced by the user up to its perfect 

operation, and the drop-down lists have been aligned with all the new 

changes of the tag lists. 

2 Related Work 

We present shortly four other similar programs. The old Treeannotator [7] 

is an application built on the Java platform. It allows loading only a 

particular format. If there are inconsistencies in the corpus loaded, the tool 

brings the corpus to its standard form. It restores the numbering of words 

in sentences, puts the items of XML in the same order, checks the validity 

of the XML, and shows where is the mistake that makes the XML invalid, 

marks the graphs that are complete trees in the list. It can draw the 

sentence graph in a linear manner or in form of trees. 
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The proposed interface on the UD site is Dependency Grammar 

Annotator (DGA) [10]. The format that can be loaded is UD, and the 

graph is linear.  

Easy Tree is an application running in the browser, created within the 

CQL summer program, edition 2015 [3]. It allows the editing of small 

sentences. The display is in tree form. 

Grammar Scope is an application on the Stanford Parser \ Stanford 

CoreNLP platform [11]. It offers very advanced functions of editing, 

creating and parsing linguistic resources, syntactically and semantically 

annotated, in a different format than ours. 

3 Treebank Annotator Settings 

Although Grammar Scope is a very good tool, it cannot be used by us 

because it was made for different format. Although these tools are 

language-independent, some specificities of a language make the authors 

to choose specific annotation conventions. We can see that each corpus 

creates specific automatic and manual annotation tools that are presented 

on its site. 

The new annotator of the UAIC-RoDepTb corpus performs all 

functions of the Treeannotator described above, and adds many more. It 

works with the folder called ”Configurations” that contains working files 

with formatting features with the lists of all possible values. The interface 

has a drop down list for each feature. We can add a new file in the folder 

”Configurations”, to introduce another format, or a new feature in a 

configuration, or a new value allowed in the list of a feature, or a new list 

of allowed values. 

In order to open a sub-corpus (which has around 1,000 sentences) it 

is necessary to choose first a configuration, i.e. to specify in which format 

the corpus to be opened is.  

Concerning the XML and CONLLU format, the application allows 

uploading of one of them and saving in the other, i.e. it can function as 

convertor. The application also allows uploading simultaneously more 

sentences in different formats and comparing two of them. (see Fig.1).  
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Figure 1. Comparison between the syntactic and semantic format. (En: 

Winston made for the stairs.) 

4 Other facilities offered by Treebank Annotator 

There are three possibilities of graphs visualization: linear, tree or oblique. 

The linear order is preferred because it is the only one that allows the 

tracing of dependencies simultaneously with the order of words in the 

text. It would be desirable for the tree view to allow the order of the words 

to be traced, as is the case in the old Treeannotator. 

The new application allows uploading of a treebank or creating a new 

dependency tree, introducing a text to be manually annotated. The tool 

creates an XML for the inserted text, with all the features of the format 

chosen by default, and the user selects a value for each feature, from its 

drop-down list. 

The tool allows not only changing the edges and the tags of all 

features, but also adding or removing words. It is an important function, 

because some multi word expressions (MWEs) are not correctly 

interpreted by the tokenizer. A group of words may be misinterpreted as 

MWE, so the words need to be separated, or multiple words have unitary 

meaning, forming a MWE, and need to be united.  

When we are adding or removing a graph node, the application 

automatically changes both word and head ID-s, so that the rest of the 

graph does not change. The tool also allows changing the word order in 

the sentence, without changing the dependency structure. When a word is 

added, it is placed at the end of the sentence and then, by changing the 

order of words, it is brought to the desired location. 
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When a word is selected, all its features existent in XML appear in 

the ”Attributes” field, each with its dropdown list. The existence of 

dropdown lists allows selecting a tag by typing only the first letters and 

eliminates the possibility of mistyping. The program does not allow 

writing a tag that is not in the chosen Configuration list. 

5 Conclusion and future work 

Specific tools have to be built for each treebank corpus, respecting the 

distinctive rules and conventions, even if they are intended to be language 

independent. In the paper, we have presented a new tool created for the 

needs of UAIC-RoDepTb. 

Following the model of Grammar Scope cited above, a syntactic 

or/and semantic parser will be integrated in the Treebank Annotator. 

Currently, the tool is used with success for the supervision of automatic 

transformation of the syntactic classic format in the UD or in the semantic 

one. In the future, tools for the automatic transposition of the classical 

syntactic format into UD and into semantic ones will be integrated as 

convertors in the Treebank Annotator. 

Another project of our NLP group is to create a Pattern Dictionary of 

Romanian Verbs (PDRoV), which will be accessible online. It will 

include contemporary, archaic, regional, familiar verbs. The Patterns are 

structures of mandatory or facultative syntactic dependencies, with their 

semantic possible realizations.  

For each verb described, examples of all the patterns will be included 

in the dependency treebank, in all of its three formats. The corpus in the 

three formats will form a database linked to the PDRoV site. 

The Treebank Annotator will be a very important component of this 

project, permitting the user to visualize the tree form of each example for 

each pattern described, in the format chosen, classical, UD, or semantic, 

displayed in linear, tree or diagonal view. 

This interface is important because it respects all the conventions of 

annotation of our treebank and also permits us to make changes in its 

Configurations, to meet new requirements, format changes, or new 

formats introduced to synchronize with similar international projects. 
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News on Twitter

Iuliana Minea, Adrian Iftene

Abstract

In this paper, we present an application built by us with aim
to provide users the possibility to explore topics from Twitter
and find out people’s opinion even if it is a positive one or a
negative one. Using algorithms that calculate distance between
two strings, similar tweets will be removed.

Keywords: Twitter, strings similarity, sentiment analysis.

1 Introduction

Every day, millions of people use Twitter to create, discover and share
ideas with other. From local stores to big brands, and from brick-
and-mortar to Internet-based or service sector, people are finding great
value in the connections they make with businesses on Twitter1. There
are many great business uses for Twitter, like sending out news briefs
or advertising the latest job opening.

Similar applications: IceRocket2 is generally for blog searches,
but it offers the possibility to search news on Twitter. Twitter search
will return most recent tweets that relate to your query. If the query
is also a user, it will show a fact box about the user, along with tweets
by that user. Twitonomy3 is an online platform and in order to use
it you have to connect with your Twitter account. The user has the
opportunity to monitor his account or any other Twitter user, along
with lists and any keyword search he wants to watch.

c©2017 by Iuliana Minea, Adrian Iftene
1http://askaaronlee.com/10-reasons-why-your-business-should-use-twitter/
2http://www.icerocket.com/
3http://www.twitonomy.com/?gclid=CO-gi fZ8dECFQuMGQodbgYCkQ
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2 Application description

The developed application aims to offer users the possibility to follow
news on Twitter, without having to read duplicate topics. In order to
remove similar news, it was used a similarity algorithm which calcu-
lates distance between two tweets. In the first phase, it was made an
analysis, in terms of time and accuracy, of the next four similarity dis-
tance algorithms: Levenshtein, Needleman-Wunsch, Jaro-Winkler and
Smith-Waterman. Upon review of the analysis result, Smith-Waterman
turned out to be more competent to find similarities.

When the user performs a search in application, it is done a request
to Twitter API in order to retrieve the latest and the most popular
tweets. The search result will be divided into subcategories. Each
category will be extracted from tweets and can be: a location, a per-

son, an organization or a date. Also tweets will be analyzed from the
sentiment point of view (positive, negative or neutral).

Similarity algorithms: In computer science and statistics, the
JaroWinkler distance is a measure of similarity between two strings
[1, 2]. It is a variant of the Jaro distance metric a type of string edit
distance, and was developed in the area of record linkage (duplicate de-
tection). The Levenshtein distance is a string metric for measuring
the difference between two sequences [3]. Informally, the Levenshtein
distance between two words is the minimum number of single-character
edits (i.e. insertions, deletions or substitutions) required to change one
word into the other. The Needleman-Wunsch algorithm is an al-
gorithm used in bioinformatics to align protein or nucleotide sequences
[4]. It was one of the first applications of dynamic programming to
compare sequences. The Smith-Waterman algorithm is a dynamic
programming method for determining similarity between nucleotide or
protein sequences [5]. The Smith-Waterman algorithm is build on the
idea of comparing segments of all possible lengths between two sequen-
ces to identify the best local alignment.

Named entity recognizer module: This module deals with ex-
tracting information, localizes and classifies named entities in tweets
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into pre-defined categories such as the names of persons, organizati-

ons, locations, expressions of times, etc. For all these operations it was
used ”Stanford Named Entity Recognizer (NER)” library4.

Tweets classifier module: Formerly known as Twitter Senti-
ment, Sentiment1405 is a service that lets users discover the current
sentiment around a brand, product or topic on Twitter. Sentiment140
uses classifiers based on machine learning algorithms and allows users
to see the classification of individual tweets.

Best similarity algorithm: In the first phase of application de-
velopment was aimed to select the best similarity algorithm. The four
algorithms introduced above were applied on a set of 2,000 tweets. For
detecting which tweets from the entire source data are similar, each
tweet was compared with all that follow it. In the Table 1 it can be
observed how long did the execution of each algorithm last. In order
to improve the execution time, it was used a caching mechanism from
Microsoft and we remove the stop words from tweets.

Table 1. Algorithms execution time

Without
cache

With
cache

With cache after re-
moving stop words

Jaro−Winkler 06:05.35 03:50.11 01:46.06

Levenshtein 22:35.37 12:10.08 11:26.82

Needleman−Wunsch 51:11.47 34:21.63 21:22.49

Smith−Waterman 39:46.32 35:33.20 23:51.46

Three of the algorithms find 505 similar tweets, while the Smith-
Waterman finds 569 similar tweets (a tweet and a retweet are the same).
In the end, we decided to use Jaro-Winkler algorithm due to its fast
running time. In the application interface we have only one from the
similar tweets and the tweets that were classified as positive have a
green background and the negative ones have a red background.

4http://nlp.stanford.edu/
5http://help.sentiment140.com/api



Iuliana Minea, et al.

3 Conclusion

Social networks can provide at a given moment a lot of information,
especially in the moments when there are special natural phenomena,
or when presidential elections take place. In such cases, the amount
of data resulting from these networks are increasing exponentially, and
there appears the need to apply advanced techniques like in this paper:
to remove duplicates and to highlight sentiments from tweets.
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Development of the Decision Support System

for Test Baking

Vladimir Popukaylo

Abstract

The article describes the process of creating a computer de-
cision support system for the quality of bakery products on the
ground of characteristics of laboratory baking. Here is shown
that large amounts of data can not be collected for statistical
analysis by classical methods. The review of knowledge analysis
tools used in the development was made and examples of prod-
uct rules are given. The developed system can be useful for the
operative regulation of the bakery products quality at the stage
of regulating the formulation.

Keywords: decision support system, baking technology,
mathematical modeling.

1 Introduction

At the stage of launching new products bakery production uses as a rule
the method of trial laboratory baking, on the basis of which physico-
chemical indicators are set for a specific name. For this purpose a
portioning technique assuming a separate test batch for each lot of
products. In order to obtain reproducible results, a recipe for 100 kg
of flour is used, which makes it possible to establish new products with
similar characteristics. At the same time, if the output measures do
not comply with the standards, a repeated test batches is performed
with the corrected recipe or with the corrected parameters in produc-
tion process As a rule such work is conducted on the basis of knowledge

c©2017 by Vladimir Popukaylo
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and experience of the enterprise technologists. The research task is the
development of an integrated system that allows to give recommenda-
tions on the operative regulation of the baking process based on the
results of several test batches.

2 Subject field analysis

The quality evaluation of the finished product and providing recom-
mendations for the rapid regulation of the formulation and process for
the test lot is a complex analytical procedure, since it is necessary to
evaluate various indicators, including: the volume of the baked prod-
uct, humidity, acidity, porosity, appearance, crumb condition, and taste
qualities. The main factors influencing the quality formation of bakery
products are the type, humidity and ash content of the flour; quan-
tity and quality of gluten, baking time, baking temperature, number
of different ingredients.

Since it is not economically feasible to conduct a large number of
production cycles, and the parameters of all products in the same test
batches are identical, which is typical for any group process, then the
data on which the solution is to be decided are both a small sample
and a super-saturated plan.

Using a large number of samples from each batch is also impossi-
ble, as at the proper organization of the production process, the main
characteristics of the batch are homogeneous and have practically no
variations in the controlled parameters, which is reflected in the labo-
ratory acts. Moreover, the usage of experimental data, which in fact
is not statistically independent, will lead to the so-called problem of
”imaginary repetitions” or pseudo-replication. It means that at re-
gression model based on a such data set, estimating the mean square
deviation of observed values from model predicted values will tend to
exceed the true variance of observation errors. Such a reassessment
will reduce the power of statistical tests and will make the hypothesis
test of the model coefficients significance conservative, which can lead
to incorrect interpretation of the results [1].
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3 Design of the decision support system

For the solution of an objective it was decided to develop the decision-
making support system using as tools: the technique of increase in the
table of the researched data based on a method of pointed distributions
[2], the ordinary least squares method, Dixon Q-test [3] for detection of
the abnormal measurements and also a set of production rules for the
rank variables analysis. At the stage of analyzing the available infor-
mation, it was decided to build separate mathematical models for each
of the output measures, which will form a system of equations that
most fully describes the studied production process. In addition to
knowledge of the quantitative parameters that are obtained by model-
ing, it is also necessary to add knowledge obtained from normative and
technical documentation to the developing DSS vocabulary of terms,
as well as knowledge from experts in the given subject area. On the
basis of these knowledge was formulated a set of rules that relates in-
dividual characteristics of the technological process and recipes, allows
to explain the occurrence of certain phenomena, and also to predict
the behavior of the studied parameters.

Most of the rules that are included in the knowledge base are pro-
ductive. Thus, the left side of the rule is a certain set of preconditions,
and the right side contains an action that can be drawn from them.
Such a rule comes into action if the preconditions associated with each
other by a set of Boolean operations are fulfilled. In this case, each
precondition is a certain value of one of the investigated parameters,
which is expressed quantitatively.

Thus, in the currently under development DSS, the prediction of all
quantitative parameters is based on a mathematical model constructed
in accordance with the developed methods and algorithms. However,
part of the investigated parameters are analyzed only organoleptically
and are scoring, which makes it impossible to apply the above-described
mathematical-statistical device to them. To manage the variations of
such data, production rules are used that analyze both quantitative and
scoring indicators. To construct mathematical models, linear regression
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analysis is used, which takes into account not only the influence of each
individual variable factor, but all their paired interactions. If any of the
input parameters has not changed during the whole production cycle,
then it is not included in the consideration, since its variations can
not be analyzed and evaluated. Analysis for the presence of outliers is
carried out for all input and output parameters, if there is a suspicion of
detecting such a value, the program displays a warning for the decision
maker, with a recommendation to check the entered data, and this
message does not affect the rest of the analysis procedure, which is
performed in accordance with the algorithm.

4 Conclusion

Summarizing the above-described, it should be noted that the computer-
based problem-oriented DSS will allow the process engineer to make
more informed decisions about the operational regulation of the recipe
and process for test baking of baked goods.
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Disaster response by simulation using GSPNs

Inga Titchiev

Abstract

The aim of this research is to provide potential solutions to
respond in case of disaster and assist in the decision-making pro-
cess by using Petri nets model [1, 2]. In order to provide these
solutions logical and temporal dependencies have to be conside-
red. For modeling there will be discussed information about the
influencing factors and endangered objects in order of adequate
response to the event. In these purposes quantitative and quali-
tative analysis will be done.

Keywords: petri nets, qualitative analysis, quantitative ana-
lysis, disaster.

1 Introduction

The Petri nets formalism [3] allows for the intuitive graphical represen-
tations of the modeled systems, as well as the analysis of the dynamic
properties. One of the most important things is as a model system to
work correctly, this is mainly determined by qualitative (or behavioral)
properties. Another important aspect is to make sure that the sy-
stem meets certain related performance characteristics (or quantitative
properties). Petri nets allow checking the correctness of the modeled
system at design phase.

2 Generalized Stochastic Petri nets

To perform quantitative and qualitative analysis, Generalized Stochas-
tic PNs (GSPNs) [4] will be used. GSPNs have been extended from
the ordinary PNs and contain the same basic sets such as:

c©2017 by Inga Titchiev
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• P the set of places;

• T the set of transitions, P
⋂

T = ∅;

• I, O, H are input, output and inhibition functions: T → N(N =
P
⋃

T ).

They were extended by using of two types of transitions: immedi-

ate transitions which are produced immediately and stochastic transi-

tions which are produced complying with an exponential distribution
function. Weighting function W : T → R, was extended in the follo-
wing way:

• for a timed transition (represented by a hollow rectangle), w(t)
is a rate (possibly marking dependent) of a negative exponential
distribution specifying the firing delay;

• for an immediate transition (represented by a filled rectangle),
w(t) is a firing weight (possibly marking dependent).

The priority function Π : T → N associates the lower priorities to
timed transitions and higher priorities to immediate transitions. The
selection of which transition will fire is based on the priorities and
weights. First, the set of transitions with the highest priority is found
and if it contains more than one enabled transition, the selection is
based on the rates or weights of the transitions. The initial marking
M0 : P → N determines the initial state of the modelled system.
When a new marking is reached, if only timed transitions are enabled,
this marking is called tangible; if at least one immediate transition is
enabled, the marking is called vanishing.

3 Qualitative and quantitative properties

Qualitative properties of a Petri [4] nets are related to such proper-
ties as deadlock (no total deadlock), liveness (no partial deadlock),
boundedness (on each place the number of tokens cannot grow in an
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unlimited way) and home state (markings that can always be reached
from any reachable state). Reachability graph can be used to deter-
mine the boundedness. Also for checking the deadlock, liveness and
bounddedness invariants analysis can be used.

Using qualitative properties and establishing additional restrictions
quantitative properties can be computed. Average number of tokens
places is the quantitative property which can be computed. In order
to compute quantitative properties we will use the property of sto-
chastic Petri nets (SPN) whereby the Markov chain of the net and
the reachability graph of the underlying Place-Transition net are iso-
morphic. Therefore all properties of the underlying Place-Transition
net also hold for SPN and vice versa. For evacuation system which
is translated in term of GSPNs we will analyse the embedded Markov
chain of the corresponding stochastic process [4], in other words we
examine only tangible state of the system. The probability of chan-
ging from one marking to another is independent of the time spent in
a marking. In this context for qualitative analysis of a GSPNs we will
exploit the underlying Place - Transition net of the GSPN and use their
algorithms.

There will be determined the restrictions for an integration of time,
such that the results of a qualitative analysis remain valid for a quan-
titative analysis as well. The restrictions are related to Extended Free
Choice nets, in these nets conflicts may occur between transitions of
the same kind. This condition is called EQUAL-Conflict. Respecting
the conditions set out above we have the following:

If we are given an EFC−GSPN whose underlying Place-Transition
net is live and bounded, the following holds:

• Condition EQUAL-Conflict ⇒ GSPN has no timeless trap.

• Condition EQUAL-Conflict ⇒ GSPN live.

• Condition EQUAL-Conflict ⇒ GSPN has home state.

In the following we will use these relationships to determine the
qualitative and quantitative properties of evacuation system in case of
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disaster.

4 Conclusion

In this study, a method of Generalized Stochastic Petri Nets was pro-
posed for determining the qualitative and quantitative properties. This
method allows, with some restrictions checking properties of GSPNs by
means of underlying Place-Transition net.

Acknowledgments. The research is performed in the frame of
the 17.80013.5007.01/Ua project Development of modelling tools for
mitigation strategies of social disaster caused by catastrophe and ter-
rorism.
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Active Learning to Increase 

Comprehension and Retention of 

Applied Mathematics 

James J. Cochran 

Abstract 

In this paper we review various definitions of active learning 

and distill these definitions into a single definition. We discuss 

some of the arguments for and against active learning, and we 

present an example of an active learning exercises that has been 

developed and used by the author with great pedagogical benefit. 

Keywords: active learning, statistics, operations research, 

management science, education, pedagogy. 

1 Active Learning Defined 

The term active learning is very popular in the academic literature on 

education; it is used frequently across disciplines and it is used in a wide 

variety of ways. For example, Bonwell & Eison [1] define active learning 

as "…anything that involves students in doing things and thinking about 

the things they are doing." The University of Michigan Center for 

Research on Learning and Teaching [2] uses the definition, “…a process 

whereby students engage in activities, such as reading, writing, 

discussion, or problem solving that promote analysis, synthesis, and 

evaluation of class content. According to Felder & Brent [3], active 

learning is "…anything course-related that all students in a class session 

are called upon to do other than simply watching, listening and taking 

notes". The Center for Educational Innovation at the University of 

Minnesota [4] defines active learning as, “…as an approach to instruction 

in which students engage the material they study through reading, writing, 

talking, listening, and reflecting. Active learning stands in contrast to 
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"standard" modes of instruction in which teachers do most of the talking 

and students are passive.” 

Although this is admittedly an extremely small and nonrandom 

sample of definitions of active learning, these definitions do provide the 

reader with some understanding of the wide variety of ways that educators 

think about active learning. While there are indeed many stark differences 

in these (and other) definitions of active learning, there are also many 

important similarities. By focusing on these similarities, the author has 

developed the following definition of active learning that he uses: 

Instructional strategies and activities designed to engage 

students in the learning process through their participation in 

exercises that involve them in higher-order thinking tasks such 

as analysis, synthesis, and evaluation of course material. 

This definition implies that the core elements of active learning are i) 

student engagement and participation in the learning process and ii) 

student involvement in higher-order thinking tasks. Furthermore, the 

breadth of this definition is sufficient to capture a wide range of 

educational activities; for example, it does not exclude exercises in which 

students participate outside of the classroom or work in student teams. It 

is also not so broad as to be meaningless. 

Active learning is often contrasted with the traditional lecture 

approach in which students passively receive information delivered by the 

instructor. 

2 Why Active Learning? 

Many instructors ascribe to the notion that learning is a naturally active 

process. These instructors, generally based on their experiences as both a 

student and as an instructor, argue that true understanding of a complex 

concept is developed most effectively through student interaction with the 

instructor, classmates, and the concept. This position naturally leads these 

instructors to use of active learning strategies and exercises. 

Because active learning encourages student engagement and 

participation in the learning process and student involvement in higher-

order thinking tasks, it is thought by its advocates to 

 recapture students’ attention

 emphasize critical points
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 encourage higher-order thinking

 unify various concepts

 smooth the transition between major areas of coverage

 ultimately enhance comprehension and retention of complex

concepts

when used effectively (see for example, Lucas et al. [5] and Freeman et al. 

[6]). However, not all faculty see active learning as a pedagogical 

panacea. Prince [7] reports that although several education researchers 

report evidence of the effectiveness of active learning, many educators 

remain skeptical and many profess to having difficulty discerning between 

active, collaborative, cooperative and problem-based learning. 

As with any innovative approach to education, it is ultimately 

difficult to determine the degree of success that is due to the approach as 

elimination of confounding factors is impractical (Cochran, [8]). 

However, this author firmly believes that active learning improves student 

comprehension and retention of difficult concepts, but he also 

acknowledges that the enthusiasm he shows for his subject when 

executing an active learning exercise with his students may be the actual 

source of this improvement in student comprehension and retention of 

difficult concepts. 

3 Teaching Matrix Transposition with an Ordinary Deck of 

Playing Cards – an Example of an Active Learning Exercise 

Matrix transposition, one of the first matrix operations covered in linear 

algebra courses, is not complicated. However, it can be difficult a difficult 

to comprehend concept for students who are new to matrices. 

Transposition is an extremely important operation that is used extensively 

throughout linear algebra, so it is essential that students quickly 

comprehend and then retain the concept. 

What can an instructor to do increase the likelihood that students will 

quickly comprehend and then retain the concept of matrix transposition? 

A memorable active learning exercise may aid the instructor in the 

accomplishment of this pedagogical objective. The author has designed 

such an active learning exercise using an ordinary deck of fifty-two 

playing cards in a magic trick. The steps of the trick are: 

1. Ask for a volunteer from the classroom.
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2. Select twenty cards at random from the deck and set aside the

remaining thirty-two cards.

3. Deal the twenty cards into an array with five rows and four

columns (for example, see Figure 1).

Figure 1 Twenty Cards in a 5x4 Array 

4. Ask the student volunteer to identify the column in which the card

she or he selected is located.

5. Collect the cards by column, being careful to preserve their

original order of the cards.

6. Deal the cards into an array with four columns and five rows,

being careful to deal the cards in a manner such that the columns

in the original array are the rows in the second array, i.e., the card

that was in the i
th
 row and j

th
 column in the original array is in the

j
th
 row and i

th
 column in the new array (for example, see Figure 2)

7. Ask the student volunteer to identify the column in which the card

she or he selected is now located.

8. Using the information the student volunteer has provided you (the

column position of the selected card in the original array is the

row position of the selected card in the new array), identify the

card she or he selected.
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Figure 2 Transposition of the Twenty Cards from the Original 5x4 

Array 

This simple active learning exercise engages the student and requires 

her or him to participate in the learning process; although the students do 

not realize it, during this exercise they are involved in higher-order logical 

and analytical thinking as they attempt to discern how the instructor was 

able to identify the card that was selected by the student volunteer. 

This exercise takes only a few minutes of classroom time to 

complete, whereas it may take an instructor a substantially greater amount 

of time to explain matrix transposition in a more traditional manner. 

Furthermore, the author’s experience supports the conclusion that students 

who have seen this demonstration comprehend and retain the concept of 

matrix transposition much better than those who have not. The potential 

return on investment for this active learning exercise is staggering. 

4 Concluding Remarks 

This unassuming card trick is but one example of a myriad of effective 

active learning exercises that have been developed by this author and 

others. This author has used other card tricks, television game shows, and 

various puzzles as the basis of active learning exercises he has developed. 

He has found that these exercises are effective ways to recapture students’ 

attention, emphasize critical points, encourage students to engage in 
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higher-order thinking, unify various concepts, smooth the transition 

between major areas of coverage, and enhance student comprehension and 

retention of complex concepts. 

The instructor does have to make an initial investment of time and 

thought when developing an active learning exercise. This may be 

daunting for instructors who are new to active learning, but instructors 

who overcome their initial trepidation may find their investment yields 

tremendous payout in the long run. 
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Develop Students’ Statistical 
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Abstract 

This workshop will address the difference between statistical 

thinking and mathematical thinking. While mathematical thinking 

is typically developed over many years beginning in the primary 

grades, statistical thinking is often not introduced until a first 

course in statistics. This workshop will present ways to engage 

students in hands-on activities that are designed to develop 

statistical thinking and conceptual understanding. 

Keywords: statistical thinking, teaching, active learning. 

1 Introduction 

Statistical thinking involves using data to reason and make decisions in a 

way that takes variability into account. Mathematical thinking can be 

characterized by the process of starting with a model and reasoning about 

what follows from that model, whereas statistical thinking involves 

starting with observed data and reasoning about the model that might have 

generated the observed data. While both mathematical and statistical 

thinking are important, most educational systems spend many years 

developing students’ mathematical thinking, but devote little time to the 

development of statistical thinking. This means that students’ first 

exposure to concepts that provide the foundation for statistical thinking 

may be in an introductory statistics course. This presents a challenge for 

those teaching this course because they are expected to develop students’ 

statistical thinking in a relatively short time.  
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2 What is Statistical Thinking? 

Although there is agreement on the importance of statistical thinking in 

understanding the complex world around us, there is no universally agreed 

upon formal definition of statistical thinking. At a minimum, statistical 

thinking involves reasoning with data in a way that takes variability into 

account. This requires an understanding of sampling variability and the 

role it plays in drawing conclusions from data and an understanding of the 

difference between convincing evidence and proof. This workshop will 

focus on these aspects of statistical thinking. 

3 Implications for Teaching 

When we ask students to think statistically, we are asking them to think in 

a way that is different from their previous experience with mathematics. 

This new way of thinking requires conceptual understanding of important 

concepts such as sampling variability, the difference between convincing 

evidence and proof, and the meaning of statistical significance. Research 

in statistics education has shown that direct instruction (lecture) is not 

very effective in developing understanding of these concepts. Activity-

based instruction appears to be a more effective mode of instruction time. 

This workshop will demonstrate three hands-on activities that can 

be used in the classroom to engage students and to demonstrate concepts 

that are important to statistical thinking.  

4 Conclusion 

Hands-on classroom activities have been shown to be an effective way to 

engage students, develop understanding of important concepts, and 

enhance students’ ability to think statistically. Activities like the ones 

demonstrated in this workshop provide students with a level of 

understanding that goes beyond just procedural fluency, and that will 

serve as a foundation for reasoning with data to understand the world 

around them. 

Roxy Peck 

California Polytechnic State University, San Luis Obispo 

E-mail: rpeck@calpoly.edu 
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Interactive Methods for Teaching Operations

Research

Mesut Yavuz

Abstract

This talk discusses interactive teaching of Operations Rese-
arch (OR). A three-phase approach to OR projects is discussed.
Current students’ capabilities, needs and expectations are also
discussed, with particular emphasis of their implications for tea-
ching OR. Several methods are presented to foster an interactive
teaching environment, and they are also demonstrated on two
examples.

Keywords: Operations research, Teaching, Spreadsheets.

1 Introduction

Operations Research (OR) is a highly interactive discipline, with roots
in mathematics and computer science and vast application areas in mul-
tiple disciplines including engineering and business. In simple terms,
OR can be defined as a quantitative discipline aiming to make best de-
cisions in constrained or unconstrained settings, utilizing data and the
scientific method. As such, quantifying the quality of decision alter-
natives (solutions) and determining what constraints may narrow the
solution space make up a key part of any operations research project,
called modeling.

Modeling corresponds to the problem definition step of the scien-
tific method, which is arguably the most important step. A widely
preached approach is to spend 55 minutes on defining the problem and

c©2017 by Mesut Yavuz
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5 minutes on solving it. OR modeling typically results in mathema-
tical formulation(s). Therefore, OR professionals need to have some
math backgrounds. However, a math background is necessary but not
sufficient. Other skills such as critical thinking and communication are
also instrumental in modeling.

Once a good representative model has been built, the focus shifts
to solving the model. Developing fast and accurate solution methods
for OR problems is of interest to researchers in the OR, applied math,
computer science and related disciplines. The practitioners are more
interested in using the methods, which is typically done in two ways:
(1) entering the model into a computer software, (2) implementing an
algorithm in a step-by-step manner. The former is useful in developing
an ability to utilize technology in tackling large-size problems. Whe-
reas, the latter is useful in developing critical thinking skills. Algorithm
implementation is more beneficial when done via spreadsheet software
(e.g., Microsoft Excel). Both ways additionally develop computer lite-
racy skills.

When a solution to the problem is obtained, the challenge of im-
plementing the solution begins. Any shortcoming in modeling would
surface during implementation, thus the modeling phase may have to
be revisited. Even if the model is proven to reflect the problem accu-
rately, the data may change at time of implementation. So, we have to
ask a series of ”what if” questions in an interpretation phase, following
solution.

OR is the primary work area of many researchers in Industrial En-
gineering and Operations Management disciplines. In these discipli-
nes, there is a tendency to express every system or method in terms of
“input → process → output.” The preceding three paragraphs roughly
outline the input (modeling), process (solution) and output (interpreta-
tion) of OR projects. Some skills needed for OR (in addition to math)
are critical thinking, communication, and computer literacy. In fact,
these skills are sought after in the business world. Thus, OR education
can help prepare students for successful careers in various fields. In this
talk, some strategies for teaching OR are presented and demonstrated
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on two examples.

2 Understanding Today’s Students’ Capabili-

ties, Needs and Expectations

One key characteristic of present day’s students is that they require
interaction. Teaching is historically viewed as a one-way relationship.
Since the ancient times, in mentor-protégé relationships protégés have
tried to capture as much knowledge from their mentors. In this struc-
ture, the mentor is the giving and the protégé is the receiving hand.
While some successful applications of this model may still exist, it does
not really fit the modern higher education system. Viewing teaching
as the ultimate learning experience, teachers can in fact get something
from teaching. Also, the more the students engage in class discussions,
the more they retain, and the more enjoyable is the experience for all
involved.

Another key characteristic of today’s students is that they are very
tech-savvy. They use their computers and smart phones, tablets, etc.
very actively. However, this tech-savviness should not be confused with
quantitative computation skills. A heavy computer user may be heavily
under-prepared in spreadsheets coming into an OR class. Furthermore,
the rigidness of formulas in spreadsheet software forms a huge barrier
for students used to auto-correct.

A third important attribute is that today’s students seek instant
feedback. When they order some product on the Internet, they can
track every movement thereof, or even get alerts on their smart phones
instantly. Teachers need to keep in mind that students come to class
with the same mentality. Whether it is a pop quiz, a homework or an
exam, the students expect to know how they did and what the correct
answer was instantly. This practically requires using some kind of a
learning management system with assignments designed to be automa-
tically graded. Luckily for us, quantitative subjects lends themselves
to automatic grading.
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The talk presents some strategies with applied examples to address
these and some other topics.

3 Example Projects

Sports interest a large number of people. As such, the sports industry
is large and provides plenty OR problems. Students relate to sports
problems more easily, and, hence, they make great examples in OR
classes. In this talk, a referee-assignment problem in professional foot-
ball leagues is presented. In a typical European football league, the
problem is quite large in size. Our focus through this example is on
the modeling and interpretation phases.

Production scheduling is one of the most prolific areas of OR. Our
second example considers a flow-shop scheduling problem that lends
itself easily to spreadsheet modeling. Via integrated modeling and
solution development in Microsoft Excel, we demonstrate several inte-
ractive teaching strategies through this example.

4 Conclusion

In this paper some proven teaching strategies are presented. Two ex-
amples, one from the field of sports and the other from production
scheduling are provided as platforms for the suggested strategies.

Mesut Yavuz

Department of Information Systems, Statistics and Management Science

Culverhouse College of Commerce and Business Administration

The University of Alabama

U.S.A.

Email: myavuz@culverhouse.ua.edu
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